–ß‚éƒ{ƒ^ƒ“
 
 
‚Í‚Ÿ` (GoG)

(GoG) ‚Í‚Ÿ`

ε= (GoG) ‚Í‚Ÿ`

C= (GoG) ‚Í‚Ÿ`

(GoG) =3 ‚Í‚Ÿ`

(GoG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( GoG )

( GoG ) ‚Í‚Ÿ`

ε= ( GoG ) ‚Í‚Ÿ`

C= ( GoG ) ‚Í‚Ÿ`

( GoG ) =3 ‚Í‚Ÿ`

( GoG ) =‚R ‚Í‚Ÿ`
(GoG ‚Í‚Ÿ`

(GoG ) ‚Í‚Ÿ`

(GoG@) ‚Í‚Ÿ`

ε= (GoG ‚Í‚Ÿ`

ε= (GoG ) ‚Í‚Ÿ`

ε= (GoG@) ‚Í‚Ÿ`

C= (GoG ‚Í‚Ÿ`

C= (GoG ) ‚Í‚Ÿ`

C= (GoG@) ‚Í‚Ÿ`
GoG) ‚Í‚Ÿ`

( GoG) ‚Í‚Ÿ`

(@GoG) ‚Í‚Ÿ`

GoG) =3 ‚Í‚Ÿ`
( GoG) =3 ‚Í‚Ÿ`
(@GoG) =3 ‚Í‚Ÿ`

GoG) =‚R ‚Í‚Ÿ`

( GoG) =‚R ‚Í‚Ÿ`

(@GoG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*GoG*)
‚Í‚Ÿ` (–GoG–)

(*GoG*) ‚Í‚Ÿ`

(–GoG–) ‚Í‚Ÿ`

ε= (*GoG*) ‚Í‚Ÿ`
ε= (–GoG–) ‚Í‚Ÿ`

C= (*GoG*) ‚Í‚Ÿ`

C= (–GoG–) ‚Í‚Ÿ`

(*GoG*) =3 ‚Í‚Ÿ`

(–GoG–) =3 ‚Í‚Ÿ`

(*GoG*) =‚R ‚Í‚Ÿ`

(–GoG–) =‚R ‚Í‚Ÿ`
(GoG* ‚Í‚Ÿ`
(GoG– ‚Í‚Ÿ`

(GoG*) ‚Í‚Ÿ`

(GoG–) ‚Í‚Ÿ`

ε= (GoG* ‚Í‚Ÿ`

ε= (GoG– ‚Í‚Ÿ`

ε= (GoG*) ‚Í‚Ÿ`

ε= (GoG–) ‚Í‚Ÿ`

C= (GoG* ‚Í‚Ÿ`

C= (GoG– ‚Í‚Ÿ`

C= (GoG*) ‚Í‚Ÿ`

C= (GoG–) ‚Í‚Ÿ`
*GoG) ‚Í‚Ÿ`
–GoG) ‚Í‚Ÿ`

(*GoG) ‚Í‚Ÿ`

(–GoG) ‚Í‚Ÿ`

*GoG) =3 ‚Í‚Ÿ`
–GoG) =3 ‚Í‚Ÿ`
(*GoG) =3 ‚Í‚Ÿ`
(–GoG) =3 ‚Í‚Ÿ`

*GoG) =‚R ‚Í‚Ÿ`

–GoG) =‚R ‚Í‚Ÿ`

(*GoG) =‚R ‚Í‚Ÿ`

(–GoG) =‚R ‚Í‚Ÿ`
(GoG— ‚Í‚Ÿ`

(GoG—) ‚Í‚Ÿ`

ε= (GoG— ‚Í‚Ÿ`

ε= (GoG—) ‚Í‚Ÿ`

C= (GoG— ‚Í‚Ÿ`

C= (GoG—) ‚Í‚Ÿ`
—GoG) ‚Í‚Ÿ`

(—GoG) ‚Í‚Ÿ`

—GoG) =3 ‚Í‚Ÿ`
(—GoG) =3 ‚Í‚Ÿ`

—GoG) =‚R ‚Í‚Ÿ`

(—GoG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VGoGV)

(VGoGV) ‚Í‚Ÿ`

ε= (VGoGV) ‚Í‚Ÿ`

C= (VGoGV) ‚Í‚Ÿ`

(VGoGV) =3 ‚Í‚Ÿ`

(VGoGV) =‚R ‚Í‚Ÿ`
(GoGV ‚Í‚Ÿ`

(GoGV) ‚Í‚Ÿ`

ε= (GoGV ‚Í‚Ÿ`

ε= (GoGV) ‚Í‚Ÿ`

C= (GoGV ‚Í‚Ÿ`

C= (GoGV) ‚Í‚Ÿ`
VGoG) ‚Í‚Ÿ`

(VGoG) ‚Í‚Ÿ`

VGoG) =3 ‚Í‚Ÿ`
(VGoG) =3 ‚Í‚Ÿ`

VGoG) =‚R ‚Í‚Ÿ`

(VGoG) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (G‚G)

(G‚G) ‚Í‚Ÿ`

ε= (G‚G) ‚Í‚Ÿ`

C= (G‚G) ‚Í‚Ÿ`

(G‚G) =3 ‚Í‚Ÿ`

(G‚G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( G‚G )

( G‚G ) ‚Í‚Ÿ`

ε= ( G‚G ) ‚Í‚Ÿ`

C= ( G‚G ) ‚Í‚Ÿ`

( G‚G ) =3 ‚Í‚Ÿ`

( G‚G ) =‚R ‚Í‚Ÿ`
(G‚G ‚Í‚Ÿ`

(G‚G ) ‚Í‚Ÿ`

(G‚G@) ‚Í‚Ÿ`

ε= (G‚G ‚Í‚Ÿ`

ε= (G‚G ) ‚Í‚Ÿ`

ε= (G‚G@) ‚Í‚Ÿ`

C= (G‚G ‚Í‚Ÿ`

C= (G‚G ) ‚Í‚Ÿ`

C= (G‚G@) ‚Í‚Ÿ`
G‚G) ‚Í‚Ÿ`

( G‚G) ‚Í‚Ÿ`

(@G‚G) ‚Í‚Ÿ`

G‚G) =3 ‚Í‚Ÿ`
( G‚G) =3 ‚Í‚Ÿ`
(@G‚G) =3 ‚Í‚Ÿ`

G‚G) =‚R ‚Í‚Ÿ`

( G‚G) =‚R ‚Í‚Ÿ`

(@G‚G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*G‚G*)
‚Í‚Ÿ` (–G‚G–)

(*G‚G*) ‚Í‚Ÿ`

(–G‚G–) ‚Í‚Ÿ`

ε= (*G‚G*) ‚Í‚Ÿ`
ε= (–G‚G–) ‚Í‚Ÿ`

C= (*G‚G*) ‚Í‚Ÿ`

C= (–G‚G–) ‚Í‚Ÿ`

(*G‚G*) =3 ‚Í‚Ÿ`

(–G‚G–) =3 ‚Í‚Ÿ`

(*G‚G*) =‚R ‚Í‚Ÿ`

(–G‚G–) =‚R ‚Í‚Ÿ`
(G‚G* ‚Í‚Ÿ`
(G‚G– ‚Í‚Ÿ`

(G‚G*) ‚Í‚Ÿ`

(G‚G–) ‚Í‚Ÿ`

ε= (G‚G* ‚Í‚Ÿ`

ε= (G‚G– ‚Í‚Ÿ`

ε= (G‚G*) ‚Í‚Ÿ`

ε= (G‚G–) ‚Í‚Ÿ`

C= (G‚G* ‚Í‚Ÿ`

C= (G‚G– ‚Í‚Ÿ`

C= (G‚G*) ‚Í‚Ÿ`

C= (G‚G–) ‚Í‚Ÿ`
*G‚G) ‚Í‚Ÿ`
–G‚G) ‚Í‚Ÿ`

(*G‚G) ‚Í‚Ÿ`

(–G‚G) ‚Í‚Ÿ`

*G‚G) =3 ‚Í‚Ÿ`
–G‚G) =3 ‚Í‚Ÿ`
(*G‚G) =3 ‚Í‚Ÿ`
(–G‚G) =3 ‚Í‚Ÿ`

*G‚G) =‚R ‚Í‚Ÿ`

–G‚G) =‚R ‚Í‚Ÿ`

(*G‚G) =‚R ‚Í‚Ÿ`

(–G‚G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VG‚GV)

(VG‚GV) ‚Í‚Ÿ`

ε= (VG‚GV) ‚Í‚Ÿ`

C= (VG‚GV) ‚Í‚Ÿ`

(VG‚GV) =3 ‚Í‚Ÿ`

(VG‚GV) =‚R ‚Í‚Ÿ`
(G‚GV ‚Í‚Ÿ`

(G‚GV) ‚Í‚Ÿ`

ε= (G‚GV ‚Í‚Ÿ`

ε= (G‚GV) ‚Í‚Ÿ`

C= (G‚GV ‚Í‚Ÿ`

C= (G‚GV) ‚Í‚Ÿ`
VG‚G) ‚Í‚Ÿ`

(VG‚G) ‚Í‚Ÿ`

VG‚G) =3 ‚Í‚Ÿ`
(VG‚G) =3 ‚Í‚Ÿ`

VG‚G) =‚R ‚Í‚Ÿ`

(VG‚G) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (G0G)

(G0G) ‚Í‚Ÿ`

ε= (G0G) ‚Í‚Ÿ`

C= (G0G) ‚Í‚Ÿ`

(G0G) =3 ‚Í‚Ÿ`

(G0G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( G0G )

( G0G ) ‚Í‚Ÿ`

ε= ( G0G ) ‚Í‚Ÿ`

C= ( G0G ) ‚Í‚Ÿ`

( G0G ) =3 ‚Í‚Ÿ`

( G0G ) =‚R ‚Í‚Ÿ`
(G0G ‚Í‚Ÿ`

(G0G ) ‚Í‚Ÿ`

(G0G@) ‚Í‚Ÿ`

ε= (G0G ‚Í‚Ÿ`

ε= (G0G ) ‚Í‚Ÿ`

ε= (G0G@) ‚Í‚Ÿ`

C= (G0G ‚Í‚Ÿ`

C= (G0G ) ‚Í‚Ÿ`

C= (G0G@) ‚Í‚Ÿ`
G0G) ‚Í‚Ÿ`

( G0G) ‚Í‚Ÿ`

(@G0G) ‚Í‚Ÿ`

G0G) =3 ‚Í‚Ÿ`
( G0G) =3 ‚Í‚Ÿ`
(@G0G) =3 ‚Í‚Ÿ`

G0G) =‚R ‚Í‚Ÿ`

( G0G) =‚R ‚Í‚Ÿ`

(@G0G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*G0G*)
‚Í‚Ÿ` (–G0G–)

(*G0G*) ‚Í‚Ÿ`

(–G0G–) ‚Í‚Ÿ`

ε= (*G0G*) ‚Í‚Ÿ`
ε= (–G0G–) ‚Í‚Ÿ`

C= (*G0G*) ‚Í‚Ÿ`

C= (–G0G–) ‚Í‚Ÿ`

(*G0G*) =3 ‚Í‚Ÿ`

(–G0G–) =3 ‚Í‚Ÿ`

(*G0G*) =‚R ‚Í‚Ÿ`

(–G0G–) =‚R ‚Í‚Ÿ`
(G0G* ‚Í‚Ÿ`
(G0G– ‚Í‚Ÿ`

(G0G*) ‚Í‚Ÿ`

(G0G–) ‚Í‚Ÿ`

ε= (G0G* ‚Í‚Ÿ`

ε= (G0G– ‚Í‚Ÿ`

ε= (G0G*) ‚Í‚Ÿ`

ε= (G0G–) ‚Í‚Ÿ`

C= (G0G* ‚Í‚Ÿ`

C= (G0G– ‚Í‚Ÿ`

C= (G0G*) ‚Í‚Ÿ`

C= (G0G–) ‚Í‚Ÿ`
*G0G) ‚Í‚Ÿ`
–G0G) ‚Í‚Ÿ`

(*G0G) ‚Í‚Ÿ`

(–G0G) ‚Í‚Ÿ`

*G0G) =3 ‚Í‚Ÿ`
–G0G) =3 ‚Í‚Ÿ`
(*G0G) =3 ‚Í‚Ÿ`
(–G0G) =3 ‚Í‚Ÿ`

*G0G) =‚R ‚Í‚Ÿ`

–G0G) =‚R ‚Í‚Ÿ`

(*G0G) =‚R ‚Í‚Ÿ`

(–G0G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VG0GV)

(VG0GV) ‚Í‚Ÿ`

ε= (VG0GV) ‚Í‚Ÿ`

C= (VG0GV) ‚Í‚Ÿ`

(VG0GV) =3 ‚Í‚Ÿ`

(VG0GV) =‚R ‚Í‚Ÿ`
(G0GV ‚Í‚Ÿ`

(G0GV) ‚Í‚Ÿ`

ε= (G0GV ‚Í‚Ÿ`

ε= (G0GV) ‚Í‚Ÿ`

C= (G0GV ‚Í‚Ÿ`

C= (G0GV) ‚Í‚Ÿ`
VG0G) ‚Í‚Ÿ`

(VG0G) ‚Í‚Ÿ`

VG0G) =3 ‚Í‚Ÿ`
(VG0G) =3 ‚Í‚Ÿ`

VG0G) =‚R ‚Í‚Ÿ`

(VG0G) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (G‚OG)

(G‚OG) ‚Í‚Ÿ`

ε= (G‚OG) ‚Í‚Ÿ`

C= (G‚OG) ‚Í‚Ÿ`

(G‚OG) =3 ‚Í‚Ÿ`

(G‚OG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( G‚OG )

( G‚OG ) ‚Í‚Ÿ`

ε= ( G‚OG ) ‚Í‚Ÿ`

C= ( G‚OG ) ‚Í‚Ÿ`

( G‚OG ) =3 ‚Í‚Ÿ`

( G‚OG ) =‚R ‚Í‚Ÿ`
(G‚OG ‚Í‚Ÿ`

(G‚OG ) ‚Í‚Ÿ`

(G‚OG@) ‚Í‚Ÿ`

ε= (G‚OG ‚Í‚Ÿ`

ε= (G‚OG ) ‚Í‚Ÿ`

ε= (G‚OG@) ‚Í‚Ÿ`

C= (G‚OG ‚Í‚Ÿ`

C= (G‚OG ) ‚Í‚Ÿ`

C= (G‚OG@) ‚Í‚Ÿ`
G‚OG) ‚Í‚Ÿ`

( G‚OG) ‚Í‚Ÿ`

(@G‚OG) ‚Í‚Ÿ`

G‚OG) =3 ‚Í‚Ÿ`
( G‚OG) =3 ‚Í‚Ÿ`
(@G‚OG) =3 ‚Í‚Ÿ`

G‚OG) =‚R ‚Í‚Ÿ`

( G‚OG) =‚R ‚Í‚Ÿ`

(@G‚OG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*G‚OG*)
‚Í‚Ÿ` (–G‚OG–)

(*G‚OG*) ‚Í‚Ÿ`

(–G‚OG–) ‚Í‚Ÿ`

ε= (*G‚OG*) ‚Í‚Ÿ`
ε= (–G‚OG–) ‚Í‚Ÿ`

C= (*G‚OG*) ‚Í‚Ÿ`

C= (–G‚OG–) ‚Í‚Ÿ`

(*G‚OG*) =3 ‚Í‚Ÿ`

(–G‚OG–) =3 ‚Í‚Ÿ`

(*G‚OG*) =‚R ‚Í‚Ÿ`

(–G‚OG–) =‚R ‚Í‚Ÿ`
(G‚OG* ‚Í‚Ÿ`
(G‚OG– ‚Í‚Ÿ`

(G‚OG*) ‚Í‚Ÿ`

(G‚OG–) ‚Í‚Ÿ`

ε= (G‚OG* ‚Í‚Ÿ`

ε= (G‚OG– ‚Í‚Ÿ`

ε= (G‚OG*) ‚Í‚Ÿ`

ε= (G‚OG–) ‚Í‚Ÿ`

C= (G‚OG* ‚Í‚Ÿ`

C= (G‚OG– ‚Í‚Ÿ`

C= (G‚OG*) ‚Í‚Ÿ`

C= (G‚OG–) ‚Í‚Ÿ`
*G‚OG) ‚Í‚Ÿ`
–G‚OG) ‚Í‚Ÿ`

(*G‚OG) ‚Í‚Ÿ`

(–G‚OG) ‚Í‚Ÿ`

*G‚OG) =3 ‚Í‚Ÿ`
–G‚OG) =3 ‚Í‚Ÿ`
(*G‚OG) =3 ‚Í‚Ÿ`
(–G‚OG) =3 ‚Í‚Ÿ`

*G‚OG) =‚R ‚Í‚Ÿ`

–G‚OG) =‚R ‚Í‚Ÿ`

(*G‚OG) =‚R ‚Í‚Ÿ`

(–G‚OG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VG‚OGV)

(VG‚OGV) ‚Í‚Ÿ`

ε= (VG‚OGV) ‚Í‚Ÿ`

C= (VG‚OGV) ‚Í‚Ÿ`

(VG‚OGV) =3 ‚Í‚Ÿ`

(VG‚OGV) =‚R ‚Í‚Ÿ`
(G‚OGV ‚Í‚Ÿ`

(G‚OGV) ‚Í‚Ÿ`

ε= (G‚OGV ‚Í‚Ÿ`

ε= (G‚OGV) ‚Í‚Ÿ`

C= (G‚OGV ‚Í‚Ÿ`

C= (G‚OGV) ‚Í‚Ÿ`
VG‚OG) ‚Í‚Ÿ`

(VG‚OG) ‚Í‚Ÿ`

VG‚OG) =3 ‚Í‚Ÿ`
(VG‚OG) =3 ‚Í‚Ÿ`

VG‚OG) =‚R ‚Í‚Ÿ`

(VG‚OG) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (G‚nG)

(G‚nG) ‚Í‚Ÿ`

ε= (G‚nG) ‚Í‚Ÿ`

C= (G‚nG) ‚Í‚Ÿ`

(G‚nG) =3 ‚Í‚Ÿ`

(G‚nG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( G‚nG )

( G‚nG ) ‚Í‚Ÿ`

ε= ( G‚nG ) ‚Í‚Ÿ`

C= ( G‚nG ) ‚Í‚Ÿ`

( G‚nG ) =3 ‚Í‚Ÿ`

( G‚nG ) =‚R ‚Í‚Ÿ`
(G‚nG ‚Í‚Ÿ`

(G‚nG ) ‚Í‚Ÿ`

(G‚nG@) ‚Í‚Ÿ`

ε= (G‚nG ‚Í‚Ÿ`

ε= (G‚nG ) ‚Í‚Ÿ`

ε= (G‚nG@) ‚Í‚Ÿ`

C= (G‚nG ‚Í‚Ÿ`

C= (G‚nG ) ‚Í‚Ÿ`

C= (G‚nG@) ‚Í‚Ÿ`
G‚nG) ‚Í‚Ÿ`

( G‚nG) ‚Í‚Ÿ`

(@G‚nG) ‚Í‚Ÿ`

G‚nG) =3 ‚Í‚Ÿ`
( G‚nG) =3 ‚Í‚Ÿ`
(@G‚nG) =3 ‚Í‚Ÿ`

G‚nG) =‚R ‚Í‚Ÿ`

( G‚nG) =‚R ‚Í‚Ÿ`

(@G‚nG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*G‚nG*)
‚Í‚Ÿ` (–G‚nG–)

(*G‚nG*) ‚Í‚Ÿ`

(–G‚nG–) ‚Í‚Ÿ`

ε= (*G‚nG*) ‚Í‚Ÿ`
ε= (–G‚nG–) ‚Í‚Ÿ`

C= (*G‚nG*) ‚Í‚Ÿ`

C= (–G‚nG–) ‚Í‚Ÿ`

(*G‚nG*) =3 ‚Í‚Ÿ`

(–G‚nG–) =3 ‚Í‚Ÿ`

(*G‚nG*) =‚R ‚Í‚Ÿ`

(–G‚nG–) =‚R ‚Í‚Ÿ`
(G‚nG* ‚Í‚Ÿ`
(G‚nG– ‚Í‚Ÿ`

(G‚nG*) ‚Í‚Ÿ`

(G‚nG–) ‚Í‚Ÿ`

ε= (G‚nG* ‚Í‚Ÿ`

ε= (G‚nG– ‚Í‚Ÿ`

ε= (G‚nG*) ‚Í‚Ÿ`

ε= (G‚nG–) ‚Í‚Ÿ`

C= (G‚nG* ‚Í‚Ÿ`

C= (G‚nG– ‚Í‚Ÿ`

C= (G‚nG*) ‚Í‚Ÿ`

C= (G‚nG–) ‚Í‚Ÿ`
*G‚nG) ‚Í‚Ÿ`
–G‚nG) ‚Í‚Ÿ`

(*G‚nG) ‚Í‚Ÿ`

(–G‚nG) ‚Í‚Ÿ`

*G‚nG) =3 ‚Í‚Ÿ`
–G‚nG) =3 ‚Í‚Ÿ`
(*G‚nG) =3 ‚Í‚Ÿ`
(–G‚nG) =3 ‚Í‚Ÿ`

*G‚nG) =‚R ‚Í‚Ÿ`

–G‚nG) =‚R ‚Í‚Ÿ`

(*G‚nG) =‚R ‚Í‚Ÿ`

(–G‚nG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VG‚nGV)

(VG‚nGV) ‚Í‚Ÿ`

ε= (VG‚nGV) ‚Í‚Ÿ`

C= (VG‚nGV) ‚Í‚Ÿ`

(VG‚nGV) =3 ‚Í‚Ÿ`

(VG‚nGV) =‚R ‚Í‚Ÿ`
(G‚nGV ‚Í‚Ÿ`

(G‚nGV) ‚Í‚Ÿ`

ε= (G‚nGV ‚Í‚Ÿ`

ε= (G‚nGV) ‚Í‚Ÿ`

C= (G‚nGV ‚Í‚Ÿ`

C= (G‚nGV) ‚Í‚Ÿ`
VG‚nG) ‚Í‚Ÿ`

(VG‚nG) ‚Í‚Ÿ`

VG‚nG) =3 ‚Í‚Ÿ`
(VG‚nG) =3 ‚Í‚Ÿ`

VG‚nG) =‚R ‚Í‚Ÿ`

(VG‚nG) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` ( G∇G )

( G∇G ) ‚Í‚Ÿ`

ε= ( G∇G ) ‚Í‚Ÿ`

C= ( G∇G ) ‚Í‚Ÿ`

( G∇G ) =3 ‚Í‚Ÿ`

( G∇G ) =‚R ‚Í‚Ÿ`
(G∇G ‚Í‚Ÿ`

(G∇G ) ‚Í‚Ÿ`

(G∇G@) ‚Í‚Ÿ`

ε= (G∇G ‚Í‚Ÿ`

ε= (G∇G ) ‚Í‚Ÿ`

ε= (G∇G@) ‚Í‚Ÿ`

C= (G∇G ‚Í‚Ÿ`

C= (G∇G ) ‚Í‚Ÿ`

C= (G∇G@) ‚Í‚Ÿ`
‚Í‚Ÿ` (*G∇G*)
‚Í‚Ÿ` (–G∇G–)

(*G∇G*) ‚Í‚Ÿ`

(–G∇G–) ‚Í‚Ÿ`

ε= (*G∇G*) ‚Í‚Ÿ`
ε= (–G∇G–) ‚Í‚Ÿ`

C= (*G∇G*) ‚Í‚Ÿ`

C= (–G∇G–) ‚Í‚Ÿ`

(*G∇G*) =3 ‚Í‚Ÿ`

(–G∇G–) =3 ‚Í‚Ÿ`

(*G∇G*) =‚R ‚Í‚Ÿ`

(–G∇G–) =‚R ‚Í‚Ÿ`
(G∇G* ‚Í‚Ÿ`
(G∇G– ‚Í‚Ÿ`

(G∇G*) ‚Í‚Ÿ`

(G∇G–) ‚Í‚Ÿ`

ε= (G∇G* ‚Í‚Ÿ`

ε= (G∇G– ‚Í‚Ÿ`

ε= (G∇G*) ‚Í‚Ÿ`

ε= (G∇G–) ‚Í‚Ÿ`

C= (G∇G* ‚Í‚Ÿ`

C= (G∇G– ‚Í‚Ÿ`

C= (G∇G*) ‚Í‚Ÿ`

C= (G∇G–) ‚Í‚Ÿ`
‚Í‚Ÿ` (VG∇GV)

(VG∇GV) ‚Í‚Ÿ`

ε= (VG∇GV) ‚Í‚Ÿ`

C= (VG∇GV) ‚Í‚Ÿ`

(VG∇GV) =3 ‚Í‚Ÿ`

(VG∇GV) =‚R ‚Í‚Ÿ`
(G∇GV ‚Í‚Ÿ`

(G∇GV) ‚Í‚Ÿ`

ε= (G∇GV ‚Í‚Ÿ`

ε= (G∇GV) ‚Í‚Ÿ`

C= (G∇GV ‚Í‚Ÿ`

C= (G∇GV) ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (G¤G)

(G¤G) ‚Í‚Ÿ`

ε= (G¤G) ‚Í‚Ÿ`

C= (G¤G) ‚Í‚Ÿ`

(G¤G) =3 ‚Í‚Ÿ`

(G¤G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( G¤G )

( G¤G ) ‚Í‚Ÿ`

ε= ( G¤G ) ‚Í‚Ÿ`

C= ( G¤G ) ‚Í‚Ÿ`

( G¤G ) =3 ‚Í‚Ÿ`

( G¤G ) =‚R ‚Í‚Ÿ`
(G¤G ‚Í‚Ÿ`

(G¤G ) ‚Í‚Ÿ`

(G¤G@) ‚Í‚Ÿ`

ε= (G¤G ‚Í‚Ÿ`

ε= (G¤G ) ‚Í‚Ÿ`

ε= (G¤G@) ‚Í‚Ÿ`

C= (G¤G ‚Í‚Ÿ`

C= (G¤G ) ‚Í‚Ÿ`

C= (G¤G@) ‚Í‚Ÿ`
G¤G) ‚Í‚Ÿ`

( G¤G) ‚Í‚Ÿ`

(@G¤G) ‚Í‚Ÿ`

G¤G) =3 ‚Í‚Ÿ`
( G¤G) =3 ‚Í‚Ÿ`
(@G¤G) =3 ‚Í‚Ÿ`

G¤G) =‚R ‚Í‚Ÿ`

( G¤G) =‚R ‚Í‚Ÿ`

(@G¤G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*G¤G*)
‚Í‚Ÿ` (–G¤G–)

(*G¤G*) ‚Í‚Ÿ`

(–G¤G–) ‚Í‚Ÿ`

ε= (*G¤G*) ‚Í‚Ÿ`
ε= (–G¤G–) ‚Í‚Ÿ`

C= (*G¤G*) ‚Í‚Ÿ`

C= (–G¤G–) ‚Í‚Ÿ`

(*G¤G*) =3 ‚Í‚Ÿ`

(–G¤G–) =3 ‚Í‚Ÿ`

(*G¤G*) =‚R ‚Í‚Ÿ`

(–G¤G–) =‚R ‚Í‚Ÿ`
(G¤G* ‚Í‚Ÿ`
(G¤G– ‚Í‚Ÿ`

(G¤G*) ‚Í‚Ÿ`

(G¤G–) ‚Í‚Ÿ`

ε= (G¤G* ‚Í‚Ÿ`

ε= (G¤G– ‚Í‚Ÿ`

ε= (G¤G*) ‚Í‚Ÿ`

ε= (G¤G–) ‚Í‚Ÿ`

C= (G¤G* ‚Í‚Ÿ`

C= (G¤G– ‚Í‚Ÿ`

C= (G¤G*) ‚Í‚Ÿ`

C= (G¤G–) ‚Í‚Ÿ`
*G¤G) ‚Í‚Ÿ`
–G¤G) ‚Í‚Ÿ`

(*G¤G) ‚Í‚Ÿ`

(–G¤G) ‚Í‚Ÿ`

*G¤G) =3 ‚Í‚Ÿ`
–G¤G) =3 ‚Í‚Ÿ`
(*G¤G) =3 ‚Í‚Ÿ`
(–G¤G) =3 ‚Í‚Ÿ`

*G¤G) =‚R ‚Í‚Ÿ`

–G¤G) =‚R ‚Í‚Ÿ`

(*G¤G) =‚R ‚Í‚Ÿ`

(–G¤G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VG¤GV)

(VG¤GV) ‚Í‚Ÿ`

ε= (VG¤GV) ‚Í‚Ÿ`

C= (VG¤GV) ‚Í‚Ÿ`

(VG¤GV) =3 ‚Í‚Ÿ`

(VG¤GV) =‚R ‚Í‚Ÿ`
(G¤GV ‚Í‚Ÿ`

(G¤GV) ‚Í‚Ÿ`

ε= (G¤GV ‚Í‚Ÿ`

ε= (G¤GV) ‚Í‚Ÿ`

C= (G¤GV ‚Í‚Ÿ`

C= (G¤GV) ‚Í‚Ÿ`
VG¤G) ‚Í‚Ÿ`

(VG¤G) ‚Í‚Ÿ`

VG¤G) =3 ‚Í‚Ÿ`
(VG¤G) =3 ‚Í‚Ÿ`

VG¤G) =‚R ‚Í‚Ÿ`

(VG¤G) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` ( G∀G )

( G∀G ) ‚Í‚Ÿ`

ε= ( G∀G ) ‚Í‚Ÿ`

C= ( G∀G ) ‚Í‚Ÿ`

( G∀G ) =3 ‚Í‚Ÿ`

( G∀G ) =‚R ‚Í‚Ÿ`
(G∀G ‚Í‚Ÿ`

(G∀G ) ‚Í‚Ÿ`

(G∀G@) ‚Í‚Ÿ`

ε= (G∀G ‚Í‚Ÿ`

ε= (G∀G ) ‚Í‚Ÿ`

ε= (G∀G@) ‚Í‚Ÿ`

C= (G∀G ‚Í‚Ÿ`

C= (G∀G ) ‚Í‚Ÿ`

C= (G∀G@) ‚Í‚Ÿ`
‚Í‚Ÿ` (*G∀G*)
‚Í‚Ÿ` (–G∀G–)

(*G∀G*) ‚Í‚Ÿ`

(–G∀G–) ‚Í‚Ÿ`

ε= (*G∀G*) ‚Í‚Ÿ`
ε= (–G∀G–) ‚Í‚Ÿ`

C= (*G∀G*) ‚Í‚Ÿ`

C= (–G∀G–) ‚Í‚Ÿ`

(*G∀G*) =3 ‚Í‚Ÿ`

(–G∀G–) =3 ‚Í‚Ÿ`

(*G∀G*) =‚R ‚Í‚Ÿ`

(–G∀G–) =‚R ‚Í‚Ÿ`
(G∀G* ‚Í‚Ÿ`
(G∀G– ‚Í‚Ÿ`

(G∀G*) ‚Í‚Ÿ`

(G∀G–) ‚Í‚Ÿ`

ε= (G∀G* ‚Í‚Ÿ`

ε= (G∀G– ‚Í‚Ÿ`

ε= (G∀G*) ‚Í‚Ÿ`

ε= (G∀G–) ‚Í‚Ÿ`

C= (G∀G* ‚Í‚Ÿ`

C= (G∀G– ‚Í‚Ÿ`

C= (G∀G*) ‚Í‚Ÿ`

C= (G∀G–) ‚Í‚Ÿ`
‚Í‚Ÿ` (VG∀GV)

(VG∀GV) ‚Í‚Ÿ`

ε= (VG∀GV) ‚Í‚Ÿ`

C= (VG∀GV) ‚Í‚Ÿ`

(VG∀GV) =3 ‚Í‚Ÿ`

(VG∀GV) =‚R ‚Í‚Ÿ`
(G∀GV ‚Í‚Ÿ`

(G∀GV) ‚Í‚Ÿ`

ε= (G∀GV ‚Í‚Ÿ`

ε= (G∀GV) ‚Í‚Ÿ`

C= (G∀GV ‚Í‚Ÿ`

C= (G∀GV) ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (GžG)

(GžG) ‚Í‚Ÿ`

ε= (GžG) ‚Í‚Ÿ`

C= (GžG) ‚Í‚Ÿ`

(GžG) =3 ‚Í‚Ÿ`

(GžG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( GžG )

( GžG ) ‚Í‚Ÿ`

ε= ( GžG ) ‚Í‚Ÿ`

C= ( GžG ) ‚Í‚Ÿ`

( GžG ) =3 ‚Í‚Ÿ`

( GžG ) =‚R ‚Í‚Ÿ`
(GžG ‚Í‚Ÿ`

(GžG ) ‚Í‚Ÿ`

(GžG@) ‚Í‚Ÿ`

ε= (GžG ‚Í‚Ÿ`

ε= (GžG ) ‚Í‚Ÿ`

ε= (GžG@) ‚Í‚Ÿ`

C= (GžG ‚Í‚Ÿ`

C= (GžG ) ‚Í‚Ÿ`

C= (GžG@) ‚Í‚Ÿ`
GžG) ‚Í‚Ÿ`

( GžG) ‚Í‚Ÿ`

(@GžG) ‚Í‚Ÿ`

GžG) =3 ‚Í‚Ÿ`
( GžG) =3 ‚Í‚Ÿ`
(@GžG) =3 ‚Í‚Ÿ`

GžG) =‚R ‚Í‚Ÿ`

( GžG) =‚R ‚Í‚Ÿ`

(@GžG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*GžG*)
‚Í‚Ÿ` (–GžG–)

(*GžG*) ‚Í‚Ÿ`

(–GžG–) ‚Í‚Ÿ`

ε= (*GžG*) ‚Í‚Ÿ`
ε= (–GžG–) ‚Í‚Ÿ`

C= (*GžG*) ‚Í‚Ÿ`

C= (–GžG–) ‚Í‚Ÿ`

(*GžG*) =3 ‚Í‚Ÿ`

(–GžG–) =3 ‚Í‚Ÿ`

(*GžG*) =‚R ‚Í‚Ÿ`

(–GžG–) =‚R ‚Í‚Ÿ`
(GžG* ‚Í‚Ÿ`
(GžG– ‚Í‚Ÿ`

(GžG*) ‚Í‚Ÿ`

(GžG–) ‚Í‚Ÿ`

ε= (GžG* ‚Í‚Ÿ`

ε= (GžG– ‚Í‚Ÿ`

ε= (GžG*) ‚Í‚Ÿ`

ε= (GžG–) ‚Í‚Ÿ`

C= (GžG* ‚Í‚Ÿ`

C= (GžG– ‚Í‚Ÿ`

C= (GžG*) ‚Í‚Ÿ`

C= (GžG–) ‚Í‚Ÿ`
*GžG) ‚Í‚Ÿ`
–GžG) ‚Í‚Ÿ`

(*GžG) ‚Í‚Ÿ`

(–GžG) ‚Í‚Ÿ`

*GžG) =3 ‚Í‚Ÿ`
–GžG) =3 ‚Í‚Ÿ`
(*GžG) =3 ‚Í‚Ÿ`
(–GžG) =3 ‚Í‚Ÿ`

*GžG) =‚R ‚Í‚Ÿ`

–GžG) =‚R ‚Í‚Ÿ`

(*GžG) =‚R ‚Í‚Ÿ`

(–GžG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VGžGV)

(VGžGV) ‚Í‚Ÿ`

ε= (VGžGV) ‚Í‚Ÿ`

C= (VGžGV) ‚Í‚Ÿ`

(VGžGV) =3 ‚Í‚Ÿ`

(VGžGV) =‚R ‚Í‚Ÿ`
(GžGV ‚Í‚Ÿ`

(GžGV) ‚Í‚Ÿ`

ε= (GžGV ‚Í‚Ÿ`

ε= (GžGV) ‚Í‚Ÿ`

C= (GžGV ‚Í‚Ÿ`

C= (GžGV) ‚Í‚Ÿ`
VGžG) ‚Í‚Ÿ`

(VGžG) ‚Í‚Ÿ`

VGžG) =3 ‚Í‚Ÿ`
(VGžG) =3 ‚Í‚Ÿ`

VGžG) =‚R ‚Í‚Ÿ`

(VGžG) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (GƒG)

(GƒG) ‚Í‚Ÿ`

ε= (GƒG) ‚Í‚Ÿ`

C= (GƒG) ‚Í‚Ÿ`

(GƒG) =3 ‚Í‚Ÿ`

(GƒG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( GƒG )

( GƒG ) ‚Í‚Ÿ`

ε= ( GƒG ) ‚Í‚Ÿ`

C= ( GƒG ) ‚Í‚Ÿ`

( GƒG ) =3 ‚Í‚Ÿ`

( GƒG ) =‚R ‚Í‚Ÿ`
(GƒG ‚Í‚Ÿ`

(GƒG ) ‚Í‚Ÿ`

(GƒG@) ‚Í‚Ÿ`

ε= (GƒG ‚Í‚Ÿ`

ε= (GƒG ) ‚Í‚Ÿ`

ε= (GƒG@) ‚Í‚Ÿ`

C= (GƒG ‚Í‚Ÿ`

C= (GƒG ) ‚Í‚Ÿ`

C= (GƒG@) ‚Í‚Ÿ`
GƒG) ‚Í‚Ÿ`

( GƒG) ‚Í‚Ÿ`

(@GƒG) ‚Í‚Ÿ`

GƒG) =3 ‚Í‚Ÿ`
( GƒG) =3 ‚Í‚Ÿ`
(@GƒG) =3 ‚Í‚Ÿ`

GƒG) =‚R ‚Í‚Ÿ`

( GƒG) =‚R ‚Í‚Ÿ`

(@GƒG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*GƒG*)
‚Í‚Ÿ` (–GƒG–)

(*GƒG*) ‚Í‚Ÿ`

(–GƒG–) ‚Í‚Ÿ`

ε= (*GƒG*) ‚Í‚Ÿ`
ε= (–GƒG–) ‚Í‚Ÿ`

C= (*GƒG*) ‚Í‚Ÿ`

C= (–GƒG–) ‚Í‚Ÿ`

(*GƒG*) =3 ‚Í‚Ÿ`

(–GƒG–) =3 ‚Í‚Ÿ`

(*GƒG*) =‚R ‚Í‚Ÿ`

(–GƒG–) =‚R ‚Í‚Ÿ`
(GƒG* ‚Í‚Ÿ`
(GƒG– ‚Í‚Ÿ`

(GƒG*) ‚Í‚Ÿ`

(GƒG–) ‚Í‚Ÿ`

ε= (GƒG* ‚Í‚Ÿ`

ε= (GƒG– ‚Í‚Ÿ`

ε= (GƒG*) ‚Í‚Ÿ`

ε= (GƒG–) ‚Í‚Ÿ`

C= (GƒG* ‚Í‚Ÿ`

C= (GƒG– ‚Í‚Ÿ`

C= (GƒG*) ‚Í‚Ÿ`

C= (GƒG–) ‚Í‚Ÿ`
*GƒG) ‚Í‚Ÿ`
–GƒG) ‚Í‚Ÿ`

(*GƒG) ‚Í‚Ÿ`

(–GƒG) ‚Í‚Ÿ`

*GƒG) =3 ‚Í‚Ÿ`
–GƒG) =3 ‚Í‚Ÿ`
(*GƒG) =3 ‚Í‚Ÿ`
(–GƒG) =3 ‚Í‚Ÿ`

*GƒG) =‚R ‚Í‚Ÿ`

–GƒG) =‚R ‚Í‚Ÿ`

(*GƒG) =‚R ‚Í‚Ÿ`

(–GƒG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VGƒGV)

(VGƒGV) ‚Í‚Ÿ`

ε= (VGƒGV) ‚Í‚Ÿ`

C= (VGƒGV) ‚Í‚Ÿ`

(VGƒGV) =3 ‚Í‚Ÿ`

(VGƒGV) =‚R ‚Í‚Ÿ`
(GƒGV ‚Í‚Ÿ`

(GƒGV) ‚Í‚Ÿ`

ε= (GƒGV ‚Í‚Ÿ`

ε= (GƒGV) ‚Í‚Ÿ`

C= (GƒGV ‚Í‚Ÿ`

C= (GƒGV) ‚Í‚Ÿ`
VGƒG) ‚Í‚Ÿ`

(VGƒG) ‚Í‚Ÿ`

VGƒG) =3 ‚Í‚Ÿ`
(VGƒG) =3 ‚Í‚Ÿ`

VGƒG) =‚R ‚Í‚Ÿ`

(VGƒG) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (GŒûG)

(GŒûG) ‚Í‚Ÿ`

ε= (GŒûG) ‚Í‚Ÿ`

C= (GŒûG) ‚Í‚Ÿ`

(GŒûG) =3 ‚Í‚Ÿ`

(GŒûG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( GŒûG )

( GŒûG ) ‚Í‚Ÿ`

ε= ( GŒûG ) ‚Í‚Ÿ`

C= ( GŒûG ) ‚Í‚Ÿ`

( GŒûG ) =3 ‚Í‚Ÿ`

( GŒûG ) =‚R ‚Í‚Ÿ`
(GŒûG ‚Í‚Ÿ`

(GŒûG ) ‚Í‚Ÿ`

(GŒûG@) ‚Í‚Ÿ`

ε= (GŒûG ‚Í‚Ÿ`

ε= (GŒûG ) ‚Í‚Ÿ`

ε= (GŒûG@) ‚Í‚Ÿ`

C= (GŒûG ‚Í‚Ÿ`

C= (GŒûG ) ‚Í‚Ÿ`

C= (GŒûG@) ‚Í‚Ÿ`
GŒûG) ‚Í‚Ÿ`

( GŒûG) ‚Í‚Ÿ`

(@GŒûG) ‚Í‚Ÿ`

GŒûG) =3 ‚Í‚Ÿ`
( GŒûG) =3 ‚Í‚Ÿ`
(@GŒûG) =3 ‚Í‚Ÿ`

GŒûG) =‚R ‚Í‚Ÿ`

( GŒûG) =‚R ‚Í‚Ÿ`

(@GŒûG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*GŒûG*)
‚Í‚Ÿ` (–GŒûG–)

(*GŒûG*) ‚Í‚Ÿ`

(–GŒûG–) ‚Í‚Ÿ`

ε= (*GŒûG*) ‚Í‚Ÿ`
ε= (–GŒûG–) ‚Í‚Ÿ`

C= (*GŒûG*) ‚Í‚Ÿ`

C= (–GŒûG–) ‚Í‚Ÿ`

(*GŒûG*) =3 ‚Í‚Ÿ`

(–GŒûG–) =3 ‚Í‚Ÿ`

(*GŒûG*) =‚R ‚Í‚Ÿ`

(–GŒûG–) =‚R ‚Í‚Ÿ`
(GŒûG* ‚Í‚Ÿ`
(GŒûG– ‚Í‚Ÿ`

(GŒûG*) ‚Í‚Ÿ`

(GŒûG–) ‚Í‚Ÿ`

ε= (GŒûG* ‚Í‚Ÿ`

ε= (GŒûG– ‚Í‚Ÿ`

ε= (GŒûG*) ‚Í‚Ÿ`

ε= (GŒûG–) ‚Í‚Ÿ`

C= (GŒûG* ‚Í‚Ÿ`

C= (GŒûG– ‚Í‚Ÿ`

C= (GŒûG*) ‚Í‚Ÿ`

C= (GŒûG–) ‚Í‚Ÿ`
*GŒûG) ‚Í‚Ÿ`
–GŒûG) ‚Í‚Ÿ`

(*GŒûG) ‚Í‚Ÿ`

(–GŒûG) ‚Í‚Ÿ`

*GŒûG) =3 ‚Í‚Ÿ`
–GŒûG) =3 ‚Í‚Ÿ`
(*GŒûG) =3 ‚Í‚Ÿ`
(–GŒûG) =3 ‚Í‚Ÿ`

*GŒûG) =‚R ‚Í‚Ÿ`

–GŒûG) =‚R ‚Í‚Ÿ`

(*GŒûG) =‚R ‚Í‚Ÿ`

(–GŒûG) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VGŒûGV)

(VGŒûGV) ‚Í‚Ÿ`

ε= (VGŒûGV) ‚Í‚Ÿ`

C= (VGŒûGV) ‚Í‚Ÿ`

(VGŒûGV) =3 ‚Í‚Ÿ`

(VGŒûGV) =‚R ‚Í‚Ÿ`
(GŒûGV ‚Í‚Ÿ`

(GŒûGV) ‚Í‚Ÿ`

ε= (GŒûGV ‚Í‚Ÿ`

ε= (GŒûGV) ‚Í‚Ÿ`

C= (GŒûGV ‚Í‚Ÿ`

C= (GŒûGV) ‚Í‚Ÿ`
VGŒûG) ‚Í‚Ÿ`

(VGŒûG) ‚Í‚Ÿ`

VGŒûG) =3 ‚Í‚Ÿ`
(VGŒûG) =3 ‚Í‚Ÿ`

VGŒûG) =‚R ‚Í‚Ÿ`

(VGŒûG) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (G¢G)

(G¢G) ‚Í‚Ÿ`

ε= (G¢G) ‚Í‚Ÿ`

C= (G¢G) ‚Í‚Ÿ`

(G¢G) =3 ‚Í‚Ÿ`

(G¢G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( G¢G )

( G¢G ) ‚Í‚Ÿ`

ε= ( G¢G ) ‚Í‚Ÿ`

C= ( G¢G ) ‚Í‚Ÿ`

( G¢G ) =3 ‚Í‚Ÿ`

( G¢G ) =‚R ‚Í‚Ÿ`
(G¢G ‚Í‚Ÿ`

(G¢G ) ‚Í‚Ÿ`

(G¢G@) ‚Í‚Ÿ`

ε= (G¢G ‚Í‚Ÿ`

ε= (G¢G ) ‚Í‚Ÿ`

ε= (G¢G@) ‚Í‚Ÿ`

C= (G¢G ‚Í‚Ÿ`

C= (G¢G ) ‚Í‚Ÿ`

C= (G¢G@) ‚Í‚Ÿ`
G¢G) ‚Í‚Ÿ`

( G¢G) ‚Í‚Ÿ`

(@G¢G) ‚Í‚Ÿ`

G¢G) =3 ‚Í‚Ÿ`
( G¢G) =3 ‚Í‚Ÿ`
(@G¢G) =3 ‚Í‚Ÿ`

G¢G) =‚R ‚Í‚Ÿ`

( G¢G) =‚R ‚Í‚Ÿ`

(@G¢G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*G¢G*)
‚Í‚Ÿ` (–G¢G–)

(*G¢G*) ‚Í‚Ÿ`

(–G¢G–) ‚Í‚Ÿ`

ε= (*G¢G*) ‚Í‚Ÿ`
ε= (–G¢G–) ‚Í‚Ÿ`

C= (*G¢G*) ‚Í‚Ÿ`

C= (–G¢G–) ‚Í‚Ÿ`

(*G¢G*) =3 ‚Í‚Ÿ`

(–G¢G–) =3 ‚Í‚Ÿ`

(*G¢G*) =‚R ‚Í‚Ÿ`

(–G¢G–) =‚R ‚Í‚Ÿ`
(G¢G* ‚Í‚Ÿ`
(G¢G– ‚Í‚Ÿ`

(G¢G*) ‚Í‚Ÿ`

(G¢G–) ‚Í‚Ÿ`

ε= (G¢G* ‚Í‚Ÿ`

ε= (G¢G– ‚Í‚Ÿ`

ε= (G¢G*) ‚Í‚Ÿ`

ε= (G¢G–) ‚Í‚Ÿ`

C= (G¢G* ‚Í‚Ÿ`

C= (G¢G– ‚Í‚Ÿ`

C= (G¢G*) ‚Í‚Ÿ`

C= (G¢G–) ‚Í‚Ÿ`
*G¢G) ‚Í‚Ÿ`
–G¢G) ‚Í‚Ÿ`

(*G¢G) ‚Í‚Ÿ`

(–G¢G) ‚Í‚Ÿ`

*G¢G) =3 ‚Í‚Ÿ`
–G¢G) =3 ‚Í‚Ÿ`
(*G¢G) =3 ‚Í‚Ÿ`
(–G¢G) =3 ‚Í‚Ÿ`

*G¢G) =‚R ‚Í‚Ÿ`

–G¢G) =‚R ‚Í‚Ÿ`

(*G¢G) =‚R ‚Í‚Ÿ`

(–G¢G) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VG¢GV)

(VG¢GV) ‚Í‚Ÿ`

ε= (VG¢GV) ‚Í‚Ÿ`

C= (VG¢GV) ‚Í‚Ÿ`

(VG¢GV) =3 ‚Í‚Ÿ`

(VG¢GV) =‚R ‚Í‚Ÿ`
(G¢GV ‚Í‚Ÿ`

(G¢GV) ‚Í‚Ÿ`

ε= (G¢GV ‚Í‚Ÿ`

ε= (G¢GV) ‚Í‚Ÿ`

C= (G¢GV ‚Í‚Ÿ`

C= (G¢GV) ‚Í‚Ÿ`
VG¢G) ‚Í‚Ÿ`

(VG¢G) ‚Í‚Ÿ`

VG¢G) =3 ‚Í‚Ÿ`
(VG¢G) =3 ‚Í‚Ÿ`

VG¢G) =‚R ‚Í‚Ÿ`

(VG¢G) =‚R ‚Í‚Ÿ`
–ß‚éƒ{ƒ^ƒ“