→ Šç•¶ŽšƒiƒrEƒgƒbƒvƒy[ƒW |
‚Í‚Ÿ` i‚½‚ê–Ú) |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (LoM) (LoM) ‚Í‚Ÿ` ε= (LoM) ‚Í‚Ÿ` C= (LoM) ‚Í‚Ÿ` (LoM) =3 ‚Í‚Ÿ` (LoM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( LoM ) ( LoM ) ‚Í‚Ÿ` ε= ( LoM ) ‚Í‚Ÿ` C= ( LoM ) ‚Í‚Ÿ` ( LoM ) =3 ‚Í‚Ÿ` ( LoM ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LoM ‚Í‚Ÿ` (LoM ) ‚Í‚Ÿ` (LoM@) ‚Í‚Ÿ` ε= (LoM ‚Í‚Ÿ` ε= (LoM ) ‚Í‚Ÿ` ε= (LoM@) ‚Í‚Ÿ` C= (LoM ‚Í‚Ÿ` C= (LoM ) ‚Í‚Ÿ` C= (LoM@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
LoM) ‚Í‚Ÿ` ( LoM) ‚Í‚Ÿ` (@LoM) ‚Í‚Ÿ` LoM) =3 ‚Í‚Ÿ` ( LoM) =3 ‚Í‚Ÿ` (@LoM) =3 ‚Í‚Ÿ` LoM) =‚R ‚Í‚Ÿ` ( LoM) =‚R ‚Í‚Ÿ` (@LoM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;LoM;)
‚Í‚Ÿ` (GLoMG) (;LoM;) ‚Í‚Ÿ` (GLoMG) ‚Í‚Ÿ` ε= (;LoM;) ‚Í‚Ÿ` ε= (GLoMG) ‚Í‚Ÿ` C= (;LoM;) ‚Í‚Ÿ` C= (GLoMG) ‚Í‚Ÿ` (;LoM;) =3 ‚Í‚Ÿ` (GLoMG) =3 ‚Í‚Ÿ` (;LoM;) =‚R ‚Í‚Ÿ` (GLoMG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LoM; ‚Í‚Ÿ`
(LoMG ‚Í‚Ÿ` (LoM;) ‚Í‚Ÿ` (LoM; ) ‚Í‚Ÿ` (LoMG) ‚Í‚Ÿ` ε= (LoM; ‚Í‚Ÿ` ε= (LoMG ‚Í‚Ÿ` ε= (LoM;) ‚Í‚Ÿ` ε= (LoM; ) ‚Í‚Ÿ` ε= (LoMG) ‚Í‚Ÿ` C= (LoM; ‚Í‚Ÿ` C= (LoMG ‚Í‚Ÿ` C= (LoM;) ‚Í‚Ÿ` C= (LoM; ) ‚Í‚Ÿ` C= (LoMG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;LoM) ‚Í‚Ÿ`
GLoM) ‚Í‚Ÿ` (;LoM) ‚Í‚Ÿ` ( ;LoM) ‚Í‚Ÿ` (GLoM) ‚Í‚Ÿ` ;LoM) =3 ‚Í‚Ÿ` GLoM) =3 ‚Í‚Ÿ` (;LoM) =3 ‚Í‚Ÿ` ( ;LoM) =3 ‚Í‚Ÿ` (GLoM) =3 ‚Í‚Ÿ` ;LoM) =‚R ‚Í‚Ÿ` GLoM) =‚R ‚Í‚Ÿ` (;LoM) =‚R ‚Í‚Ÿ` ( ;LoM) =‚R ‚Í‚Ÿ` (GLoM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*LoM*)
‚Í‚Ÿ` (–LoM–) (*LoM*) ‚Í‚Ÿ` (–LoM–) ‚Í‚Ÿ` ε= (*LoM*) ‚Í‚Ÿ` ε= (–LoM–) ‚Í‚Ÿ` C= (*LoM*) ‚Í‚Ÿ` C= (–LoM–) ‚Í‚Ÿ` (*LoM*) =3 ‚Í‚Ÿ` (–LoM–) =3 ‚Í‚Ÿ` (*LoM*) =‚R ‚Í‚Ÿ` (–LoM–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LoM* ‚Í‚Ÿ`
(LoM– ‚Í‚Ÿ` (LoM*) ‚Í‚Ÿ` (LoM–) ‚Í‚Ÿ` ε= (LoM* ‚Í‚Ÿ` ε= (LoM– ‚Í‚Ÿ` ε= (LoM*) ‚Í‚Ÿ` ε= (LoM–) ‚Í‚Ÿ` C= (LoM* ‚Í‚Ÿ` C= (LoM– ‚Í‚Ÿ` C= (LoM*) ‚Í‚Ÿ` C= (LoM–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*LoM) ‚Í‚Ÿ`
–LoM) ‚Í‚Ÿ` (*LoM) ‚Í‚Ÿ` (–LoM) ‚Í‚Ÿ` *LoM) =3 ‚Í‚Ÿ` –LoM) =3 ‚Í‚Ÿ` (*LoM) =3 ‚Í‚Ÿ` (–LoM) =3 ‚Í‚Ÿ` *LoM) =‚R ‚Í‚Ÿ` –LoM) =‚R ‚Í‚Ÿ` (*LoM) =‚R ‚Í‚Ÿ` (–LoM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LoM— ‚Í‚Ÿ` (LoM—) ‚Í‚Ÿ` ε= (LoM— ‚Í‚Ÿ` ε= (LoM—) ‚Í‚Ÿ` C= (LoM— ‚Í‚Ÿ` C= (LoM—) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
—LoM) ‚Í‚Ÿ` (—LoM) ‚Í‚Ÿ` —LoM) =3 ‚Í‚Ÿ` (—LoM) =3 ‚Í‚Ÿ` —LoM) =‚R ‚Í‚Ÿ` (—LoM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VLoMV) (VLoMV) ‚Í‚Ÿ` ε= (VLoMV) ‚Í‚Ÿ` C= (VLoMV) ‚Í‚Ÿ` (VLoMV) =3 ‚Í‚Ÿ` (VLoMV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LoMV ‚Í‚Ÿ` (LoMV) ‚Í‚Ÿ` ε= (LoMV ‚Í‚Ÿ` ε= (LoMV) ‚Í‚Ÿ` C= (LoMV ‚Í‚Ÿ` C= (LoMV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VLoM) ‚Í‚Ÿ` (VLoM) ‚Í‚Ÿ` VLoM) =3 ‚Í‚Ÿ` (VLoM) =3 ‚Í‚Ÿ` VLoM) =‚R ‚Í‚Ÿ` (VLoM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (L‚M) (L‚M) ‚Í‚Ÿ` ε= (L‚M) ‚Í‚Ÿ` C= (L‚M) ‚Í‚Ÿ` (L‚M) =3 ‚Í‚Ÿ` (L‚M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( L‚M ) ( L‚M ) ‚Í‚Ÿ` ε= ( L‚M ) ‚Í‚Ÿ` C= ( L‚M ) ‚Í‚Ÿ` ( L‚M ) =3 ‚Í‚Ÿ` ( L‚M ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚M ‚Í‚Ÿ` (L‚M ) ‚Í‚Ÿ` (L‚M@) ‚Í‚Ÿ` ε= (L‚M ‚Í‚Ÿ` ε= (L‚M ) ‚Í‚Ÿ` ε= (L‚M@) ‚Í‚Ÿ` C= (L‚M ‚Í‚Ÿ` C= (L‚M ) ‚Í‚Ÿ` C= (L‚M@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
L‚M) ‚Í‚Ÿ` ( L‚M) ‚Í‚Ÿ` (@L‚M) ‚Í‚Ÿ` L‚M) =3 ‚Í‚Ÿ` ( L‚M) =3 ‚Í‚Ÿ` (@L‚M) =3 ‚Í‚Ÿ` L‚M) =‚R ‚Í‚Ÿ` ( L‚M) =‚R ‚Í‚Ÿ` (@L‚M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;L‚M;)
‚Í‚Ÿ` (GL‚MG) (;L‚M;) ‚Í‚Ÿ` (GL‚MG) ‚Í‚Ÿ` ε= (;L‚M;) ‚Í‚Ÿ` ε= (GL‚MG) ‚Í‚Ÿ` C= (;L‚M;) ‚Í‚Ÿ` C= (GL‚MG) ‚Í‚Ÿ` (;L‚M;) =3 ‚Í‚Ÿ` (GL‚MG) =3 ‚Í‚Ÿ` (;L‚M;) =‚R ‚Í‚Ÿ` (GL‚MG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚M; ‚Í‚Ÿ`
(L‚MG ‚Í‚Ÿ` (L‚M;) ‚Í‚Ÿ` (L‚M; ) ‚Í‚Ÿ` (L‚MG) ‚Í‚Ÿ` ε= (L‚M; ‚Í‚Ÿ` ε= (L‚MG ‚Í‚Ÿ` ε= (L‚M;) ‚Í‚Ÿ` ε= (L‚M; ) ‚Í‚Ÿ` ε= (L‚MG) ‚Í‚Ÿ` C= (L‚M; ‚Í‚Ÿ` C= (L‚MG ‚Í‚Ÿ` C= (L‚M;) ‚Í‚Ÿ` C= (L‚M; ) ‚Í‚Ÿ` C= (L‚MG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;L‚M) ‚Í‚Ÿ`
GL‚M) ‚Í‚Ÿ` (;L‚M) ‚Í‚Ÿ` ( ;L‚M) ‚Í‚Ÿ` (GL‚M) ‚Í‚Ÿ` ;L‚M) =3 ‚Í‚Ÿ` GL‚M) =3 ‚Í‚Ÿ` (;L‚M) =3 ‚Í‚Ÿ` ( ;L‚M) =3 ‚Í‚Ÿ` (GL‚M) =3 ‚Í‚Ÿ` ;L‚M) =‚R ‚Í‚Ÿ` GL‚M) =‚R ‚Í‚Ÿ` (;L‚M) =‚R ‚Í‚Ÿ` ( ;L‚M) =‚R ‚Í‚Ÿ` (GL‚M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*L‚M*)
‚Í‚Ÿ` (–L‚M–) (*L‚M*) ‚Í‚Ÿ` (–L‚M–) ‚Í‚Ÿ` ε= (*L‚M*) ‚Í‚Ÿ` ε= (–L‚M–) ‚Í‚Ÿ` C= (*L‚M*) ‚Í‚Ÿ` C= (–L‚M–) ‚Í‚Ÿ` (*L‚M*) =3 ‚Í‚Ÿ` (–L‚M–) =3 ‚Í‚Ÿ` (*L‚M*) =‚R ‚Í‚Ÿ` (–L‚M–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚M* ‚Í‚Ÿ`
(L‚M– ‚Í‚Ÿ` (L‚M*) ‚Í‚Ÿ` (L‚M–) ‚Í‚Ÿ` ε= (L‚M* ‚Í‚Ÿ` ε= (L‚M– ‚Í‚Ÿ` ε= (L‚M*) ‚Í‚Ÿ` ε= (L‚M–) ‚Í‚Ÿ` C= (L‚M* ‚Í‚Ÿ` C= (L‚M– ‚Í‚Ÿ` C= (L‚M*) ‚Í‚Ÿ` C= (L‚M–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*L‚M) ‚Í‚Ÿ`
–L‚M) ‚Í‚Ÿ` (*L‚M) ‚Í‚Ÿ` (–L‚M) ‚Í‚Ÿ` *L‚M) =3 ‚Í‚Ÿ` –L‚M) =3 ‚Í‚Ÿ` (*L‚M) =3 ‚Í‚Ÿ` (–L‚M) =3 ‚Í‚Ÿ` *L‚M) =‚R ‚Í‚Ÿ` –L‚M) =‚R ‚Í‚Ÿ` (*L‚M) =‚R ‚Í‚Ÿ` (–L‚M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VL‚MV) (VL‚MV) ‚Í‚Ÿ` ε= (VL‚MV) ‚Í‚Ÿ` C= (VL‚MV) ‚Í‚Ÿ` (VL‚MV) =3 ‚Í‚Ÿ` (VL‚MV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚MV ‚Í‚Ÿ` (L‚MV) ‚Í‚Ÿ` ε= (L‚MV ‚Í‚Ÿ` ε= (L‚MV) ‚Í‚Ÿ` C= (L‚MV ‚Í‚Ÿ` C= (L‚MV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VL‚M) ‚Í‚Ÿ` (VL‚M) ‚Í‚Ÿ` VL‚M) =3 ‚Í‚Ÿ` (VL‚M) =3 ‚Í‚Ÿ` VL‚M) =‚R ‚Í‚Ÿ` (VL‚M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (L0M) (L0M) ‚Í‚Ÿ` ε= (L0M) ‚Í‚Ÿ` C= (L0M) ‚Í‚Ÿ` (L0M) =3 ‚Í‚Ÿ` (L0M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( L0M ) ( L0M ) ‚Í‚Ÿ` ε= ( L0M ) ‚Í‚Ÿ` C= ( L0M ) ‚Í‚Ÿ` ( L0M ) =3 ‚Í‚Ÿ` ( L0M ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L0M ‚Í‚Ÿ` (L0M ) ‚Í‚Ÿ` (L0M@) ‚Í‚Ÿ` ε= (L0M ‚Í‚Ÿ` ε= (L0M ) ‚Í‚Ÿ` ε= (L0M@) ‚Í‚Ÿ` C= (L0M ‚Í‚Ÿ` C= (L0M ) ‚Í‚Ÿ` C= (L0M@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
L0M) ‚Í‚Ÿ` ( L0M) ‚Í‚Ÿ` (@L0M) ‚Í‚Ÿ` L0M) =3 ‚Í‚Ÿ` ( L0M) =3 ‚Í‚Ÿ` (@L0M) =3 ‚Í‚Ÿ` L0M) =‚R ‚Í‚Ÿ` ( L0M) =‚R ‚Í‚Ÿ` (@L0M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;L0M;)
‚Í‚Ÿ` (GL0MG) (;L0M;) ‚Í‚Ÿ` (GL0MG) ‚Í‚Ÿ` ε= (;L0M;) ‚Í‚Ÿ` ε= (GL0MG) ‚Í‚Ÿ` C= (;L0M;) ‚Í‚Ÿ` C= (GL0MG) ‚Í‚Ÿ` (;L0M;) =3 ‚Í‚Ÿ` (GL0MG) =3 ‚Í‚Ÿ` (;L0M;) =‚R ‚Í‚Ÿ` (GL0MG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L0M; ‚Í‚Ÿ`
(L0MG ‚Í‚Ÿ` (L0M;) ‚Í‚Ÿ` (L0M; ) ‚Í‚Ÿ` (L0MG) ‚Í‚Ÿ` ε= (L0M; ‚Í‚Ÿ` ε= (L0MG ‚Í‚Ÿ` ε= (L0M;) ‚Í‚Ÿ` ε= (L0M; ) ‚Í‚Ÿ` ε= (L0MG) ‚Í‚Ÿ` C= (L0M; ‚Í‚Ÿ` C= (L0MG ‚Í‚Ÿ` C= (L0M;) ‚Í‚Ÿ` C= (L0M; ) ‚Í‚Ÿ` C= (L0MG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;L0M) ‚Í‚Ÿ`
GL0M) ‚Í‚Ÿ` (;L0M) ‚Í‚Ÿ` ( ;L0M) ‚Í‚Ÿ` (GL0M) ‚Í‚Ÿ` ;L0M) =3 ‚Í‚Ÿ` GL0M) =3 ‚Í‚Ÿ` (;L0M) =3 ‚Í‚Ÿ` ( ;L0M) =3 ‚Í‚Ÿ` (GL0M) =3 ‚Í‚Ÿ` ;L0M) =‚R ‚Í‚Ÿ` GL0M) =‚R ‚Í‚Ÿ` (;L0M) =‚R ‚Í‚Ÿ` ( ;L0M) =‚R ‚Í‚Ÿ` (GL0M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*L0M*)
‚Í‚Ÿ` (–L0M–) (*L0M*) ‚Í‚Ÿ` (–L0M–) ‚Í‚Ÿ` ε= (*L0M*) ‚Í‚Ÿ` ε= (–L0M–) ‚Í‚Ÿ` C= (*L0M*) ‚Í‚Ÿ` C= (–L0M–) ‚Í‚Ÿ` (*L0M*) =3 ‚Í‚Ÿ` (–L0M–) =3 ‚Í‚Ÿ` (*L0M*) =‚R ‚Í‚Ÿ` (–L0M–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L0M* ‚Í‚Ÿ`
(L0M– ‚Í‚Ÿ` (L0M*) ‚Í‚Ÿ` (L0M–) ‚Í‚Ÿ` ε= (L0M* ‚Í‚Ÿ` ε= (L0M– ‚Í‚Ÿ` ε= (L0M*) ‚Í‚Ÿ` ε= (L0M–) ‚Í‚Ÿ` C= (L0M* ‚Í‚Ÿ` C= (L0M– ‚Í‚Ÿ` C= (L0M*) ‚Í‚Ÿ` C= (L0M–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*L0M) ‚Í‚Ÿ`
–L0M) ‚Í‚Ÿ` (*L0M) ‚Í‚Ÿ` (–L0M) ‚Í‚Ÿ` *L0M) =3 ‚Í‚Ÿ` –L0M) =3 ‚Í‚Ÿ` (*L0M) =3 ‚Í‚Ÿ` (–L0M) =3 ‚Í‚Ÿ` *L0M) =‚R ‚Í‚Ÿ` –L0M) =‚R ‚Í‚Ÿ` (*L0M) =‚R ‚Í‚Ÿ` (–L0M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VL0MV) (VL0MV) ‚Í‚Ÿ` ε= (VL0MV) ‚Í‚Ÿ` C= (VL0MV) ‚Í‚Ÿ` (VL0MV) =3 ‚Í‚Ÿ` (VL0MV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L0MV ‚Í‚Ÿ` (L0MV) ‚Í‚Ÿ` ε= (L0MV ‚Í‚Ÿ` ε= (L0MV) ‚Í‚Ÿ` C= (L0MV ‚Í‚Ÿ` C= (L0MV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VL0M) ‚Í‚Ÿ` (VL0M) ‚Í‚Ÿ` VL0M) =3 ‚Í‚Ÿ` (VL0M) =3 ‚Í‚Ÿ` VL0M) =‚R ‚Í‚Ÿ` (VL0M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (L‚OM) (L‚OM) ‚Í‚Ÿ` ε= (L‚OM) ‚Í‚Ÿ` C= (L‚OM) ‚Í‚Ÿ` (L‚OM) =3 ‚Í‚Ÿ` (L‚OM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( L‚OM ) ( L‚OM ) ‚Í‚Ÿ` ε= ( L‚OM ) ‚Í‚Ÿ` C= ( L‚OM ) ‚Í‚Ÿ` ( L‚OM ) =3 ‚Í‚Ÿ` ( L‚OM ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚OM ‚Í‚Ÿ` (L‚OM ) ‚Í‚Ÿ` (L‚OM@) ‚Í‚Ÿ` ε= (L‚OM ‚Í‚Ÿ` ε= (L‚OM ) ‚Í‚Ÿ` ε= (L‚OM@) ‚Í‚Ÿ` C= (L‚OM ‚Í‚Ÿ` C= (L‚OM ) ‚Í‚Ÿ` C= (L‚OM@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
L‚OM) ‚Í‚Ÿ` ( L‚OM) ‚Í‚Ÿ` (@L‚OM) ‚Í‚Ÿ` L‚OM) =3 ‚Í‚Ÿ` ( L‚OM) =3 ‚Í‚Ÿ` (@L‚OM) =3 ‚Í‚Ÿ` L‚OM) =‚R ‚Í‚Ÿ` ( L‚OM) =‚R ‚Í‚Ÿ` (@L‚OM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;L‚OM;)
‚Í‚Ÿ` (GL‚OMG) (;L‚OM;) ‚Í‚Ÿ` (GL‚OMG) ‚Í‚Ÿ` ε= (;L‚OM;) ‚Í‚Ÿ` ε= (GL‚OMG) ‚Í‚Ÿ` C= (;L‚OM;) ‚Í‚Ÿ` C= (GL‚OMG) ‚Í‚Ÿ` (;L‚OM;) =3 ‚Í‚Ÿ` (GL‚OMG) =3 ‚Í‚Ÿ` (;L‚OM;) =‚R ‚Í‚Ÿ` (GL‚OMG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚OM; ‚Í‚Ÿ`
(L‚OMG ‚Í‚Ÿ` (L‚OM;) ‚Í‚Ÿ` (L‚OM; ) ‚Í‚Ÿ` (L‚OMG) ‚Í‚Ÿ` ε= (L‚OM; ‚Í‚Ÿ` ε= (L‚OMG ‚Í‚Ÿ` ε= (L‚OM;) ‚Í‚Ÿ` ε= (L‚OM; ) ‚Í‚Ÿ` ε= (L‚OMG) ‚Í‚Ÿ` C= (L‚OM; ‚Í‚Ÿ` C= (L‚OMG ‚Í‚Ÿ` C= (L‚OM;) ‚Í‚Ÿ` C= (L‚OM; ) ‚Í‚Ÿ` C= (L‚OMG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;L‚OM) ‚Í‚Ÿ`
GL‚OM) ‚Í‚Ÿ` (;L‚OM) ‚Í‚Ÿ` ( ;L‚OM) ‚Í‚Ÿ` (GL‚OM) ‚Í‚Ÿ` ;L‚OM) =3 ‚Í‚Ÿ` GL‚OM) =3 ‚Í‚Ÿ` (;L‚OM) =3 ‚Í‚Ÿ` ( ;L‚OM) =3 ‚Í‚Ÿ` (GL‚OM) =3 ‚Í‚Ÿ` ;L‚OM) =‚R ‚Í‚Ÿ` GL‚OM) =‚R ‚Í‚Ÿ` (;L‚OM) =‚R ‚Í‚Ÿ` ( ;L‚OM) =‚R ‚Í‚Ÿ` (GL‚OM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*L‚OM*)
‚Í‚Ÿ` (–L‚OM–) (*L‚OM*) ‚Í‚Ÿ` (–L‚OM–) ‚Í‚Ÿ` ε= (*L‚OM*) ‚Í‚Ÿ` ε= (–L‚OM–) ‚Í‚Ÿ` C= (*L‚OM*) ‚Í‚Ÿ` C= (–L‚OM–) ‚Í‚Ÿ` (*L‚OM*) =3 ‚Í‚Ÿ` (–L‚OM–) =3 ‚Í‚Ÿ` (*L‚OM*) =‚R ‚Í‚Ÿ` (–L‚OM–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚OM* ‚Í‚Ÿ`
(L‚OM– ‚Í‚Ÿ` (L‚OM*) ‚Í‚Ÿ` (L‚OM–) ‚Í‚Ÿ` ε= (L‚OM* ‚Í‚Ÿ` ε= (L‚OM– ‚Í‚Ÿ` ε= (L‚OM*) ‚Í‚Ÿ` ε= (L‚OM–) ‚Í‚Ÿ` C= (L‚OM* ‚Í‚Ÿ` C= (L‚OM– ‚Í‚Ÿ` C= (L‚OM*) ‚Í‚Ÿ` C= (L‚OM–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*L‚OM) ‚Í‚Ÿ`
–L‚OM) ‚Í‚Ÿ` (*L‚OM) ‚Í‚Ÿ` (–L‚OM) ‚Í‚Ÿ` *L‚OM) =3 ‚Í‚Ÿ` –L‚OM) =3 ‚Í‚Ÿ` (*L‚OM) =3 ‚Í‚Ÿ` (–L‚OM) =3 ‚Í‚Ÿ` *L‚OM) =‚R ‚Í‚Ÿ` –L‚OM) =‚R ‚Í‚Ÿ` (*L‚OM) =‚R ‚Í‚Ÿ` (–L‚OM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VL‚OMV) (VL‚OMV) ‚Í‚Ÿ` ε= (VL‚OMV) ‚Í‚Ÿ` C= (VL‚OMV) ‚Í‚Ÿ` (VL‚OMV) =3 ‚Í‚Ÿ` (VL‚OMV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚OMV ‚Í‚Ÿ` (L‚OMV) ‚Í‚Ÿ` ε= (L‚OMV ‚Í‚Ÿ` ε= (L‚OMV) ‚Í‚Ÿ` C= (L‚OMV ‚Í‚Ÿ` C= (L‚OMV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VL‚OM) ‚Í‚Ÿ` (VL‚OM) ‚Í‚Ÿ` VL‚OM) =3 ‚Í‚Ÿ` (VL‚OM) =3 ‚Í‚Ÿ` VL‚OM) =‚R ‚Í‚Ÿ` (VL‚OM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (L‚nM) (L‚nM) ‚Í‚Ÿ` ε= (L‚nM) ‚Í‚Ÿ` C= (L‚nM) ‚Í‚Ÿ` (L‚nM) =3 ‚Í‚Ÿ` (L‚nM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( L‚nM ) ( L‚nM ) ‚Í‚Ÿ` ε= ( L‚nM ) ‚Í‚Ÿ` C= ( L‚nM ) ‚Í‚Ÿ` ( L‚nM ) =3 ‚Í‚Ÿ` ( L‚nM ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚nM ‚Í‚Ÿ` (L‚nM ) ‚Í‚Ÿ` (L‚nM@) ‚Í‚Ÿ` ε= (L‚nM ‚Í‚Ÿ` ε= (L‚nM ) ‚Í‚Ÿ` ε= (L‚nM@) ‚Í‚Ÿ` C= (L‚nM ‚Í‚Ÿ` C= (L‚nM ) ‚Í‚Ÿ` C= (L‚nM@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
L‚nM) ‚Í‚Ÿ` ( L‚nM) ‚Í‚Ÿ` (@L‚nM) ‚Í‚Ÿ` L‚nM) =3 ‚Í‚Ÿ` ( L‚nM) =3 ‚Í‚Ÿ` (@L‚nM) =3 ‚Í‚Ÿ` L‚nM) =‚R ‚Í‚Ÿ` ( L‚nM) =‚R ‚Í‚Ÿ` (@L‚nM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;L‚nM;)
‚Í‚Ÿ` (GL‚nMG) (;L‚nM;) ‚Í‚Ÿ` (GL‚nMG) ‚Í‚Ÿ` ε= (;L‚nM;) ‚Í‚Ÿ` ε= (GL‚nMG) ‚Í‚Ÿ` C= (;L‚nM;) ‚Í‚Ÿ` C= (GL‚nMG) ‚Í‚Ÿ` (;L‚nM;) =3 ‚Í‚Ÿ` (GL‚nMG) =3 ‚Í‚Ÿ` (;L‚nM;) =‚R ‚Í‚Ÿ` (GL‚nMG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚nM; ‚Í‚Ÿ`
(L‚nMG ‚Í‚Ÿ` (L‚nM;) ‚Í‚Ÿ` (L‚nM; ) ‚Í‚Ÿ` (L‚nMG) ‚Í‚Ÿ` ε= (L‚nM; ‚Í‚Ÿ` ε= (L‚nMG ‚Í‚Ÿ` ε= (L‚nM;) ‚Í‚Ÿ` ε= (L‚nM; ) ‚Í‚Ÿ` ε= (L‚nMG) ‚Í‚Ÿ` C= (L‚nM; ‚Í‚Ÿ` C= (L‚nMG ‚Í‚Ÿ` C= (L‚nM;) ‚Í‚Ÿ` C= (L‚nM; ) ‚Í‚Ÿ` C= (L‚nMG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;L‚nM) ‚Í‚Ÿ`
GL‚nM) ‚Í‚Ÿ` (;L‚nM) ‚Í‚Ÿ` ( ;L‚nM) ‚Í‚Ÿ` (GL‚nM) ‚Í‚Ÿ` ;L‚nM) =3 ‚Í‚Ÿ` GL‚nM) =3 ‚Í‚Ÿ` (;L‚nM) =3 ‚Í‚Ÿ` ( ;L‚nM) =3 ‚Í‚Ÿ` (GL‚nM) =3 ‚Í‚Ÿ` ;L‚nM) =‚R ‚Í‚Ÿ` GL‚nM) =‚R ‚Í‚Ÿ` (;L‚nM) =‚R ‚Í‚Ÿ` ( ;L‚nM) =‚R ‚Í‚Ÿ` (GL‚nM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*L‚nM*)
‚Í‚Ÿ` (–L‚nM–) (*L‚nM*) ‚Í‚Ÿ` (–L‚nM–) ‚Í‚Ÿ` ε= (*L‚nM*) ‚Í‚Ÿ` ε= (–L‚nM–) ‚Í‚Ÿ` C= (*L‚nM*) ‚Í‚Ÿ` C= (–L‚nM–) ‚Í‚Ÿ` (*L‚nM*) =3 ‚Í‚Ÿ` (–L‚nM–) =3 ‚Í‚Ÿ` (*L‚nM*) =‚R ‚Í‚Ÿ` (–L‚nM–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚nM* ‚Í‚Ÿ`
(L‚nM– ‚Í‚Ÿ` (L‚nM*) ‚Í‚Ÿ` (L‚nM–) ‚Í‚Ÿ` ε= (L‚nM* ‚Í‚Ÿ` ε= (L‚nM– ‚Í‚Ÿ` ε= (L‚nM*) ‚Í‚Ÿ` ε= (L‚nM–) ‚Í‚Ÿ` C= (L‚nM* ‚Í‚Ÿ` C= (L‚nM– ‚Í‚Ÿ` C= (L‚nM*) ‚Í‚Ÿ` C= (L‚nM–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*L‚nM) ‚Í‚Ÿ`
–L‚nM) ‚Í‚Ÿ` (*L‚nM) ‚Í‚Ÿ` (–L‚nM) ‚Í‚Ÿ` *L‚nM) =3 ‚Í‚Ÿ` –L‚nM) =3 ‚Í‚Ÿ` (*L‚nM) =3 ‚Í‚Ÿ` (–L‚nM) =3 ‚Í‚Ÿ` *L‚nM) =‚R ‚Í‚Ÿ` –L‚nM) =‚R ‚Í‚Ÿ` (*L‚nM) =‚R ‚Í‚Ÿ` (–L‚nM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VL‚nMV) (VL‚nMV) ‚Í‚Ÿ` ε= (VL‚nMV) ‚Í‚Ÿ` C= (VL‚nMV) ‚Í‚Ÿ` (VL‚nMV) =3 ‚Í‚Ÿ` (VL‚nMV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L‚nMV ‚Í‚Ÿ` (L‚nMV) ‚Í‚Ÿ` ε= (L‚nMV ‚Í‚Ÿ` ε= (L‚nMV) ‚Í‚Ÿ` C= (L‚nMV ‚Í‚Ÿ` C= (L‚nMV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VL‚nM) ‚Í‚Ÿ` (VL‚nM) ‚Í‚Ÿ` VL‚nM) =3 ‚Í‚Ÿ` (VL‚nM) =3 ‚Í‚Ÿ` VL‚nM) =‚R ‚Í‚Ÿ` (VL‚nM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (L∇M) (L∇M) ‚Í‚Ÿ` ε= (L∇M) ‚Í‚Ÿ` C= (L∇M) ‚Í‚Ÿ` (L∇M) =3 ‚Í‚Ÿ` (L∇M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( L∇M ) ( L∇M ) ‚Í‚Ÿ` ε= ( L∇M ) ‚Í‚Ÿ` C= ( L∇M ) ‚Í‚Ÿ` ( L∇M ) =3 ‚Í‚Ÿ` ( L∇M ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L∇M ‚Í‚Ÿ` (L∇M ) ‚Í‚Ÿ` (L∇M@) ‚Í‚Ÿ` ε= (L∇M ‚Í‚Ÿ` ε= (L∇M ) ‚Í‚Ÿ` ε= (L∇M@) ‚Í‚Ÿ` C= (L∇M ‚Í‚Ÿ` C= (L∇M ) ‚Í‚Ÿ` C= (L∇M@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
L∇M) ‚Í‚Ÿ` ( L∇M) ‚Í‚Ÿ` (@L∇M) ‚Í‚Ÿ` L∇M) =3 ‚Í‚Ÿ` ( L∇M) =3 ‚Í‚Ÿ` (@L∇M) =3 ‚Í‚Ÿ` L∇M) =‚R ‚Í‚Ÿ` ( L∇M) =‚R ‚Í‚Ÿ` (@L∇M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;L∇M;)
‚Í‚Ÿ` (GL∇MG) (;L∇M;) ‚Í‚Ÿ` (GL∇MG) ‚Í‚Ÿ` ε= (;L∇M;) ‚Í‚Ÿ` ε= (GL∇MG) ‚Í‚Ÿ` C= (;L∇M;) ‚Í‚Ÿ` C= (GL∇MG) ‚Í‚Ÿ` (;L∇M;) =3 ‚Í‚Ÿ` (GL∇MG) =3 ‚Í‚Ÿ` (;L∇M;) =‚R ‚Í‚Ÿ` (GL∇MG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L∇M; ‚Í‚Ÿ`
(L∇MG ‚Í‚Ÿ` (L∇M;) ‚Í‚Ÿ` (L∇M; ) ‚Í‚Ÿ` (L∇MG) ‚Í‚Ÿ` ε= (L∇M; ‚Í‚Ÿ` ε= (L∇MG ‚Í‚Ÿ` ε= (L∇M;) ‚Í‚Ÿ` ε= (L∇M; ) ‚Í‚Ÿ` ε= (L∇MG) ‚Í‚Ÿ` C= (L∇M; ‚Í‚Ÿ` C= (L∇MG ‚Í‚Ÿ` C= (L∇M;) ‚Í‚Ÿ` C= (L∇M; ) ‚Í‚Ÿ` C= (L∇MG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;L∇M) ‚Í‚Ÿ`
GL∇M) ‚Í‚Ÿ` (;L∇M) ‚Í‚Ÿ` ( ;L∇M) ‚Í‚Ÿ` (GL∇M) ‚Í‚Ÿ` ;L∇M) =3 ‚Í‚Ÿ` GL∇M) =3 ‚Í‚Ÿ` (;L∇M) =3 ‚Í‚Ÿ` ( ;L∇M) =3 ‚Í‚Ÿ` (GL∇M) =3 ‚Í‚Ÿ` ;L∇M) =‚R ‚Í‚Ÿ` GL∇M) =‚R ‚Í‚Ÿ` (;L∇M) =‚R ‚Í‚Ÿ` ( ;L∇M) =‚R ‚Í‚Ÿ` (GL∇M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*L∇M*)
‚Í‚Ÿ` (–L∇M–) (*L∇M*) ‚Í‚Ÿ` (–L∇M–) ‚Í‚Ÿ` ε= (*L∇M*) ‚Í‚Ÿ` ε= (–L∇M–) ‚Í‚Ÿ` C= (*L∇M*) ‚Í‚Ÿ` C= (–L∇M–) ‚Í‚Ÿ` (*L∇M*) =3 ‚Í‚Ÿ` (–L∇M–) =3 ‚Í‚Ÿ` (*L∇M*) =‚R ‚Í‚Ÿ` (–L∇M–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L∇M* ‚Í‚Ÿ`
(L∇M– ‚Í‚Ÿ` (L∇M*) ‚Í‚Ÿ` (L∇M–) ‚Í‚Ÿ` ε= (L∇M* ‚Í‚Ÿ` ε= (L∇M– ‚Í‚Ÿ` ε= (L∇M*) ‚Í‚Ÿ` ε= (L∇M–) ‚Í‚Ÿ` C= (L∇M* ‚Í‚Ÿ` C= (L∇M– ‚Í‚Ÿ` C= (L∇M*) ‚Í‚Ÿ` C= (L∇M–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*L∇M) ‚Í‚Ÿ`
–L∇M) ‚Í‚Ÿ` (*L∇M) ‚Í‚Ÿ` (–L∇M) ‚Í‚Ÿ` *L∇M) =3 ‚Í‚Ÿ` –L∇M) =3 ‚Í‚Ÿ` (*L∇M) =3 ‚Í‚Ÿ` (–L∇M) =3 ‚Í‚Ÿ` *L∇M) =‚R ‚Í‚Ÿ` –L∇M) =‚R ‚Í‚Ÿ` (*L∇M) =‚R ‚Í‚Ÿ` (–L∇M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VL∇MV) (VL∇MV) ‚Í‚Ÿ` ε= (VL∇MV) ‚Í‚Ÿ` C= (VL∇MV) ‚Í‚Ÿ` (VL∇MV) =3 ‚Í‚Ÿ` (VL∇MV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L∇MV ‚Í‚Ÿ` (L∇MV) ‚Í‚Ÿ` ε= (L∇MV ‚Í‚Ÿ` ε= (L∇MV) ‚Í‚Ÿ` C= (L∇MV ‚Í‚Ÿ` C= (L∇MV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VL∇M) ‚Í‚Ÿ` (VL∇M) ‚Í‚Ÿ` VL∇M) =3 ‚Í‚Ÿ` (VL∇M) =3 ‚Í‚Ÿ` VL∇M) =‚R ‚Í‚Ÿ` (VL∇M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (L¤M) (L¤M) ‚Í‚Ÿ` ε= (L¤M) ‚Í‚Ÿ` C= (L¤M) ‚Í‚Ÿ` (L¤M) =3 ‚Í‚Ÿ` (L¤M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( L¤M ) ( L¤M ) ‚Í‚Ÿ` ε= ( L¤M ) ‚Í‚Ÿ` C= ( L¤M ) ‚Í‚Ÿ` ( L¤M ) =3 ‚Í‚Ÿ` ( L¤M ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L¤M ‚Í‚Ÿ` (L¤M ) ‚Í‚Ÿ` (L¤M@) ‚Í‚Ÿ` ε= (L¤M ‚Í‚Ÿ` ε= (L¤M ) ‚Í‚Ÿ` ε= (L¤M@) ‚Í‚Ÿ` C= (L¤M ‚Í‚Ÿ` C= (L¤M ) ‚Í‚Ÿ` C= (L¤M@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
L¤M) ‚Í‚Ÿ` ( L¤M) ‚Í‚Ÿ` (@L¤M) ‚Í‚Ÿ` L¤M) =3 ‚Í‚Ÿ` ( L¤M) =3 ‚Í‚Ÿ` (@L¤M) =3 ‚Í‚Ÿ` L¤M) =‚R ‚Í‚Ÿ` ( L¤M) =‚R ‚Í‚Ÿ` (@L¤M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;L¤M;)
‚Í‚Ÿ` (GL¤MG) (;L¤M;) ‚Í‚Ÿ` (GL¤MG) ‚Í‚Ÿ` ε= (;L¤M;) ‚Í‚Ÿ` ε= (GL¤MG) ‚Í‚Ÿ` C= (;L¤M;) ‚Í‚Ÿ` C= (GL¤MG) ‚Í‚Ÿ` (;L¤M;) =3 ‚Í‚Ÿ` (GL¤MG) =3 ‚Í‚Ÿ` (;L¤M;) =‚R ‚Í‚Ÿ` (GL¤MG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L¤M; ‚Í‚Ÿ`
(L¤MG ‚Í‚Ÿ` (L¤M;) ‚Í‚Ÿ` (L¤M; ) ‚Í‚Ÿ` (L¤MG) ‚Í‚Ÿ` ε= (L¤M; ‚Í‚Ÿ` ε= (L¤MG ‚Í‚Ÿ` ε= (L¤M;) ‚Í‚Ÿ` ε= (L¤M; ) ‚Í‚Ÿ` ε= (L¤MG) ‚Í‚Ÿ` C= (L¤M; ‚Í‚Ÿ` C= (L¤MG ‚Í‚Ÿ` C= (L¤M;) ‚Í‚Ÿ` C= (L¤M; ) ‚Í‚Ÿ` C= (L¤MG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;L¤M) ‚Í‚Ÿ`
GL¤M) ‚Í‚Ÿ` (;L¤M) ‚Í‚Ÿ` ( ;L¤M) ‚Í‚Ÿ` (GL¤M) ‚Í‚Ÿ` ;L¤M) =3 ‚Í‚Ÿ` GL¤M) =3 ‚Í‚Ÿ` (;L¤M) =3 ‚Í‚Ÿ` ( ;L¤M) =3 ‚Í‚Ÿ` (GL¤M) =3 ‚Í‚Ÿ` ;L¤M) =‚R ‚Í‚Ÿ` GL¤M) =‚R ‚Í‚Ÿ` (;L¤M) =‚R ‚Í‚Ÿ` ( ;L¤M) =‚R ‚Í‚Ÿ` (GL¤M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*L¤M*)
‚Í‚Ÿ` (–L¤M–) (*L¤M*) ‚Í‚Ÿ` (–L¤M–) ‚Í‚Ÿ` ε= (*L¤M*) ‚Í‚Ÿ` ε= (–L¤M–) ‚Í‚Ÿ` C= (*L¤M*) ‚Í‚Ÿ` C= (–L¤M–) ‚Í‚Ÿ` (*L¤M*) =3 ‚Í‚Ÿ` (–L¤M–) =3 ‚Í‚Ÿ` (*L¤M*) =‚R ‚Í‚Ÿ` (–L¤M–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L¤M* ‚Í‚Ÿ`
(L¤M– ‚Í‚Ÿ` (L¤M*) ‚Í‚Ÿ` (L¤M–) ‚Í‚Ÿ` ε= (L¤M* ‚Í‚Ÿ` ε= (L¤M– ‚Í‚Ÿ` ε= (L¤M*) ‚Í‚Ÿ` ε= (L¤M–) ‚Í‚Ÿ` C= (L¤M* ‚Í‚Ÿ` C= (L¤M– ‚Í‚Ÿ` C= (L¤M*) ‚Í‚Ÿ` C= (L¤M–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*L¤M) ‚Í‚Ÿ`
–L¤M) ‚Í‚Ÿ` (*L¤M) ‚Í‚Ÿ` (–L¤M) ‚Í‚Ÿ` *L¤M) =3 ‚Í‚Ÿ` –L¤M) =3 ‚Í‚Ÿ` (*L¤M) =3 ‚Í‚Ÿ` (–L¤M) =3 ‚Í‚Ÿ` *L¤M) =‚R ‚Í‚Ÿ` –L¤M) =‚R ‚Í‚Ÿ` (*L¤M) =‚R ‚Í‚Ÿ` (–L¤M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VL¤MV) (VL¤MV) ‚Í‚Ÿ` ε= (VL¤MV) ‚Í‚Ÿ` C= (VL¤MV) ‚Í‚Ÿ` (VL¤MV) =3 ‚Í‚Ÿ` (VL¤MV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L¤MV ‚Í‚Ÿ` (L¤MV) ‚Í‚Ÿ` ε= (L¤MV ‚Í‚Ÿ` ε= (L¤MV) ‚Í‚Ÿ` C= (L¤MV ‚Í‚Ÿ` C= (L¤MV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VL¤M) ‚Í‚Ÿ` (VL¤M) ‚Í‚Ÿ` VL¤M) =3 ‚Í‚Ÿ` (VL¤M) =3 ‚Í‚Ÿ` VL¤M) =‚R ‚Í‚Ÿ` (VL¤M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (L∀M) (L∀M) ‚Í‚Ÿ` ε= (L∀M) ‚Í‚Ÿ` C= (L∀M) ‚Í‚Ÿ` (L∀M) =3 ‚Í‚Ÿ` (L∀M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( L∀M ) ( L∀M ) ‚Í‚Ÿ` ε= ( L∀M ) ‚Í‚Ÿ` C= ( L∀M ) ‚Í‚Ÿ` ( L∀M ) =3 ‚Í‚Ÿ` ( L∀M ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L∀M ‚Í‚Ÿ` (L∀M ) ‚Í‚Ÿ` (L∀M@) ‚Í‚Ÿ` ε= (L∀M ‚Í‚Ÿ` ε= (L∀M ) ‚Í‚Ÿ` ε= (L∀M@) ‚Í‚Ÿ` C= (L∀M ‚Í‚Ÿ` C= (L∀M ) ‚Í‚Ÿ` C= (L∀M@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
L∀M) ‚Í‚Ÿ` ( L∀M) ‚Í‚Ÿ` (@L∀M) ‚Í‚Ÿ` L∀M) =3 ‚Í‚Ÿ` ( L∀M) =3 ‚Í‚Ÿ` (@L∀M) =3 ‚Í‚Ÿ` L∀M) =‚R ‚Í‚Ÿ` ( L∀M) =‚R ‚Í‚Ÿ` (@L∀M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;L∀M;)
‚Í‚Ÿ` (GL∀MG) (;L∀M;) ‚Í‚Ÿ` (GL∀MG) ‚Í‚Ÿ` ε= (;L∀M;) ‚Í‚Ÿ` ε= (GL∀MG) ‚Í‚Ÿ` C= (;L∀M;) ‚Í‚Ÿ` C= (GL∀MG) ‚Í‚Ÿ` (;L∀M;) =3 ‚Í‚Ÿ` (GL∀MG) =3 ‚Í‚Ÿ` (;L∀M;) =‚R ‚Í‚Ÿ` (GL∀MG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L∀M; ‚Í‚Ÿ`
(L∀MG ‚Í‚Ÿ` (L∀M;) ‚Í‚Ÿ` (L∀M; ) ‚Í‚Ÿ` (L∀MG) ‚Í‚Ÿ` ε= (L∀M; ‚Í‚Ÿ` ε= (L∀MG ‚Í‚Ÿ` ε= (L∀M;) ‚Í‚Ÿ` ε= (L∀M; ) ‚Í‚Ÿ` ε= (L∀MG) ‚Í‚Ÿ` C= (L∀M; ‚Í‚Ÿ` C= (L∀MG ‚Í‚Ÿ` C= (L∀M;) ‚Í‚Ÿ` C= (L∀M; ) ‚Í‚Ÿ` C= (L∀MG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;L∀M) ‚Í‚Ÿ`
GL∀M) ‚Í‚Ÿ` (;L∀M) ‚Í‚Ÿ` ( ;L∀M) ‚Í‚Ÿ` (GL∀M) ‚Í‚Ÿ` ;L∀M) =3 ‚Í‚Ÿ` GL∀M) =3 ‚Í‚Ÿ` (;L∀M) =3 ‚Í‚Ÿ` ( ;L∀M) =3 ‚Í‚Ÿ` (GL∀M) =3 ‚Í‚Ÿ` ;L∀M) =‚R ‚Í‚Ÿ` GL∀M) =‚R ‚Í‚Ÿ` (;L∀M) =‚R ‚Í‚Ÿ` ( ;L∀M) =‚R ‚Í‚Ÿ` (GL∀M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*L∀M*)
‚Í‚Ÿ` (–L∀M–) (*L∀M*) ‚Í‚Ÿ` (–L∀M–) ‚Í‚Ÿ` ε= (*L∀M*) ‚Í‚Ÿ` ε= (–L∀M–) ‚Í‚Ÿ` C= (*L∀M*) ‚Í‚Ÿ` C= (–L∀M–) ‚Í‚Ÿ` (*L∀M*) =3 ‚Í‚Ÿ` (–L∀M–) =3 ‚Í‚Ÿ` (*L∀M*) =‚R ‚Í‚Ÿ` (–L∀M–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L∀M* ‚Í‚Ÿ`
(L∀M– ‚Í‚Ÿ` (L∀M*) ‚Í‚Ÿ` (L∀M–) ‚Í‚Ÿ` ε= (L∀M* ‚Í‚Ÿ` ε= (L∀M– ‚Í‚Ÿ` ε= (L∀M*) ‚Í‚Ÿ` ε= (L∀M–) ‚Í‚Ÿ` C= (L∀M* ‚Í‚Ÿ` C= (L∀M– ‚Í‚Ÿ` C= (L∀M*) ‚Í‚Ÿ` C= (L∀M–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*L∀M) ‚Í‚Ÿ`
–L∀M) ‚Í‚Ÿ` (*L∀M) ‚Í‚Ÿ` (–L∀M) ‚Í‚Ÿ` *L∀M) =3 ‚Í‚Ÿ` –L∀M) =3 ‚Í‚Ÿ` (*L∀M) =3 ‚Í‚Ÿ` (–L∀M) =3 ‚Í‚Ÿ` *L∀M) =‚R ‚Í‚Ÿ` –L∀M) =‚R ‚Í‚Ÿ` (*L∀M) =‚R ‚Í‚Ÿ` (–L∀M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VL∀MV) (VL∀MV) ‚Í‚Ÿ` ε= (VL∀MV) ‚Í‚Ÿ` C= (VL∀MV) ‚Í‚Ÿ` (VL∀MV) =3 ‚Í‚Ÿ` (VL∀MV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L∀MV ‚Í‚Ÿ` (L∀MV) ‚Í‚Ÿ` ε= (L∀MV ‚Í‚Ÿ` ε= (L∀MV) ‚Í‚Ÿ` C= (L∀MV ‚Í‚Ÿ` C= (L∀MV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VL∀M) ‚Í‚Ÿ` (VL∀M) ‚Í‚Ÿ` VL∀M) =3 ‚Í‚Ÿ` (VL∀M) =3 ‚Í‚Ÿ` VL∀M) =‚R ‚Í‚Ÿ` (VL∀M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (LžM) (LžM) ‚Í‚Ÿ` ε= (LžM) ‚Í‚Ÿ` C= (LžM) ‚Í‚Ÿ` (LžM) =3 ‚Í‚Ÿ` (LžM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( LžM ) ( LžM ) ‚Í‚Ÿ` ε= ( LžM ) ‚Í‚Ÿ` C= ( LžM ) ‚Í‚Ÿ` ( LžM ) =3 ‚Í‚Ÿ` ( LžM ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LžM ‚Í‚Ÿ` (LžM ) ‚Í‚Ÿ` (LžM@) ‚Í‚Ÿ` ε= (LžM ‚Í‚Ÿ` ε= (LžM ) ‚Í‚Ÿ` ε= (LžM@) ‚Í‚Ÿ` C= (LžM ‚Í‚Ÿ` C= (LžM ) ‚Í‚Ÿ` C= (LžM@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
LžM) ‚Í‚Ÿ` ( LžM) ‚Í‚Ÿ` (@LžM) ‚Í‚Ÿ` LžM) =3 ‚Í‚Ÿ` ( LžM) =3 ‚Í‚Ÿ` (@LžM) =3 ‚Í‚Ÿ` LžM) =‚R ‚Í‚Ÿ` ( LžM) =‚R ‚Í‚Ÿ` (@LžM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;LžM;)
‚Í‚Ÿ` (GLžMG) (;LžM;) ‚Í‚Ÿ` (GLžMG) ‚Í‚Ÿ` ε= (;LžM;) ‚Í‚Ÿ` ε= (GLžMG) ‚Í‚Ÿ` C= (;LžM;) ‚Í‚Ÿ` C= (GLžMG) ‚Í‚Ÿ` (;LžM;) =3 ‚Í‚Ÿ` (GLžMG) =3 ‚Í‚Ÿ` (;LžM;) =‚R ‚Í‚Ÿ` (GLžMG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LžM; ‚Í‚Ÿ`
(LžMG ‚Í‚Ÿ` (LžM;) ‚Í‚Ÿ` (LžM; ) ‚Í‚Ÿ` (LžMG) ‚Í‚Ÿ` ε= (LžM; ‚Í‚Ÿ` ε= (LžMG ‚Í‚Ÿ` ε= (LžM;) ‚Í‚Ÿ` ε= (LžM; ) ‚Í‚Ÿ` ε= (LžMG) ‚Í‚Ÿ` C= (LžM; ‚Í‚Ÿ` C= (LžMG ‚Í‚Ÿ` C= (LžM;) ‚Í‚Ÿ` C= (LžM; ) ‚Í‚Ÿ` C= (LžMG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;LžM) ‚Í‚Ÿ`
GLžM) ‚Í‚Ÿ` (;LžM) ‚Í‚Ÿ` ( ;LžM) ‚Í‚Ÿ` (GLžM) ‚Í‚Ÿ` ;LžM) =3 ‚Í‚Ÿ` GLžM) =3 ‚Í‚Ÿ` (;LžM) =3 ‚Í‚Ÿ` ( ;LžM) =3 ‚Í‚Ÿ` (GLžM) =3 ‚Í‚Ÿ` ;LžM) =‚R ‚Í‚Ÿ` GLžM) =‚R ‚Í‚Ÿ` (;LžM) =‚R ‚Í‚Ÿ` ( ;LžM) =‚R ‚Í‚Ÿ` (GLžM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*LžM*)
‚Í‚Ÿ` (–LžM–) (*LžM*) ‚Í‚Ÿ` (–LžM–) ‚Í‚Ÿ` ε= (*LžM*) ‚Í‚Ÿ` ε= (–LžM–) ‚Í‚Ÿ` C= (*LžM*) ‚Í‚Ÿ` C= (–LžM–) ‚Í‚Ÿ` (*LžM*) =3 ‚Í‚Ÿ` (–LžM–) =3 ‚Í‚Ÿ` (*LžM*) =‚R ‚Í‚Ÿ` (–LžM–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LžM* ‚Í‚Ÿ`
(LžM– ‚Í‚Ÿ` (LžM*) ‚Í‚Ÿ` (LžM–) ‚Í‚Ÿ` ε= (LžM* ‚Í‚Ÿ` ε= (LžM– ‚Í‚Ÿ` ε= (LžM*) ‚Í‚Ÿ` ε= (LžM–) ‚Í‚Ÿ` C= (LžM* ‚Í‚Ÿ` C= (LžM– ‚Í‚Ÿ` C= (LžM*) ‚Í‚Ÿ` C= (LžM–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*LžM) ‚Í‚Ÿ`
–LžM) ‚Í‚Ÿ` (*LžM) ‚Í‚Ÿ` (–LžM) ‚Í‚Ÿ` *LžM) =3 ‚Í‚Ÿ` –LžM) =3 ‚Í‚Ÿ` (*LžM) =3 ‚Í‚Ÿ` (–LžM) =3 ‚Í‚Ÿ` *LžM) =‚R ‚Í‚Ÿ` –LžM) =‚R ‚Í‚Ÿ` (*LžM) =‚R ‚Í‚Ÿ` (–LžM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VLžMV) (VLžMV) ‚Í‚Ÿ` ε= (VLžMV) ‚Í‚Ÿ` C= (VLžMV) ‚Í‚Ÿ` (VLžMV) =3 ‚Í‚Ÿ` (VLžMV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LžMV ‚Í‚Ÿ` (LžMV) ‚Í‚Ÿ` ε= (LžMV ‚Í‚Ÿ` ε= (LžMV) ‚Í‚Ÿ` C= (LžMV ‚Í‚Ÿ` C= (LžMV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VLžM) ‚Í‚Ÿ` (VLžM) ‚Í‚Ÿ` VLžM) =3 ‚Í‚Ÿ` (VLžM) =3 ‚Í‚Ÿ` VLžM) =‚R ‚Í‚Ÿ` (VLžM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (LƒM) (LƒM) ‚Í‚Ÿ` ε= (LƒM) ‚Í‚Ÿ` C= (LƒM) ‚Í‚Ÿ` (LƒM) =3 ‚Í‚Ÿ` (LƒM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( LƒM ) ( LƒM ) ‚Í‚Ÿ` ε= ( LƒM ) ‚Í‚Ÿ` C= ( LƒM ) ‚Í‚Ÿ` ( LƒM ) =3 ‚Í‚Ÿ` ( LƒM ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LƒM ‚Í‚Ÿ` (LƒM ) ‚Í‚Ÿ` (LƒM@) ‚Í‚Ÿ` ε= (LƒM ‚Í‚Ÿ` ε= (LƒM ) ‚Í‚Ÿ` ε= (LƒM@) ‚Í‚Ÿ` C= (LƒM ‚Í‚Ÿ` C= (LƒM ) ‚Í‚Ÿ` C= (LƒM@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
LƒM) ‚Í‚Ÿ` ( LƒM) ‚Í‚Ÿ` (@LƒM) ‚Í‚Ÿ` LƒM) =3 ‚Í‚Ÿ` ( LƒM) =3 ‚Í‚Ÿ` (@LƒM) =3 ‚Í‚Ÿ` LƒM) =‚R ‚Í‚Ÿ` ( LƒM) =‚R ‚Í‚Ÿ` (@LƒM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;LƒM;)
‚Í‚Ÿ` (GLƒMG) (;LƒM;) ‚Í‚Ÿ` (GLƒMG) ‚Í‚Ÿ` ε= (;LƒM;) ‚Í‚Ÿ` ε= (GLƒMG) ‚Í‚Ÿ` C= (;LƒM;) ‚Í‚Ÿ` C= (GLƒMG) ‚Í‚Ÿ` (;LƒM;) =3 ‚Í‚Ÿ` (GLƒMG) =3 ‚Í‚Ÿ` (;LƒM;) =‚R ‚Í‚Ÿ` (GLƒMG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LƒM; ‚Í‚Ÿ`
(LƒMG ‚Í‚Ÿ` (LƒM;) ‚Í‚Ÿ` (LƒM; ) ‚Í‚Ÿ` (LƒMG) ‚Í‚Ÿ` ε= (LƒM; ‚Í‚Ÿ` ε= (LƒMG ‚Í‚Ÿ` ε= (LƒM;) ‚Í‚Ÿ` ε= (LƒM; ) ‚Í‚Ÿ` ε= (LƒMG) ‚Í‚Ÿ` C= (LƒM; ‚Í‚Ÿ` C= (LƒMG ‚Í‚Ÿ` C= (LƒM;) ‚Í‚Ÿ` C= (LƒM; ) ‚Í‚Ÿ` C= (LƒMG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;LƒM) ‚Í‚Ÿ`
GLƒM) ‚Í‚Ÿ` (;LƒM) ‚Í‚Ÿ` ( ;LƒM) ‚Í‚Ÿ` (GLƒM) ‚Í‚Ÿ` ;LƒM) =3 ‚Í‚Ÿ` GLƒM) =3 ‚Í‚Ÿ` (;LƒM) =3 ‚Í‚Ÿ` ( ;LƒM) =3 ‚Í‚Ÿ` (GLƒM) =3 ‚Í‚Ÿ` ;LƒM) =‚R ‚Í‚Ÿ` GLƒM) =‚R ‚Í‚Ÿ` (;LƒM) =‚R ‚Í‚Ÿ` ( ;LƒM) =‚R ‚Í‚Ÿ` (GLƒM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*LƒM*)
‚Í‚Ÿ` (–LƒM–) (*LƒM*) ‚Í‚Ÿ` (–LƒM–) ‚Í‚Ÿ` ε= (*LƒM*) ‚Í‚Ÿ` ε= (–LƒM–) ‚Í‚Ÿ` C= (*LƒM*) ‚Í‚Ÿ` C= (–LƒM–) ‚Í‚Ÿ` (*LƒM*) =3 ‚Í‚Ÿ` (–LƒM–) =3 ‚Í‚Ÿ` (*LƒM*) =‚R ‚Í‚Ÿ` (–LƒM–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LƒM* ‚Í‚Ÿ`
(LƒM– ‚Í‚Ÿ` (LƒM*) ‚Í‚Ÿ` (LƒM–) ‚Í‚Ÿ` ε= (LƒM* ‚Í‚Ÿ` ε= (LƒM– ‚Í‚Ÿ` ε= (LƒM*) ‚Í‚Ÿ` ε= (LƒM–) ‚Í‚Ÿ` C= (LƒM* ‚Í‚Ÿ` C= (LƒM– ‚Í‚Ÿ` C= (LƒM*) ‚Í‚Ÿ` C= (LƒM–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*LƒM) ‚Í‚Ÿ`
–LƒM) ‚Í‚Ÿ` (*LƒM) ‚Í‚Ÿ` (–LƒM) ‚Í‚Ÿ` *LƒM) =3 ‚Í‚Ÿ` –LƒM) =3 ‚Í‚Ÿ` (*LƒM) =3 ‚Í‚Ÿ` (–LƒM) =3 ‚Í‚Ÿ` *LƒM) =‚R ‚Í‚Ÿ` –LƒM) =‚R ‚Í‚Ÿ` (*LƒM) =‚R ‚Í‚Ÿ` (–LƒM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VLƒMV) (VLƒMV) ‚Í‚Ÿ` ε= (VLƒMV) ‚Í‚Ÿ` C= (VLƒMV) ‚Í‚Ÿ` (VLƒMV) =3 ‚Í‚Ÿ` (VLƒMV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LƒMV ‚Í‚Ÿ` (LƒMV) ‚Í‚Ÿ` ε= (LƒMV ‚Í‚Ÿ` ε= (LƒMV) ‚Í‚Ÿ` C= (LƒMV ‚Í‚Ÿ` C= (LƒMV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VLƒM) ‚Í‚Ÿ` (VLƒM) ‚Í‚Ÿ` VLƒM) =3 ‚Í‚Ÿ` (VLƒM) =3 ‚Í‚Ÿ` VLƒM) =‚R ‚Í‚Ÿ` (VLƒM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (LŒûM) (LŒûM) ‚Í‚Ÿ` ε= (LŒûM) ‚Í‚Ÿ` C= (LŒûM) ‚Í‚Ÿ` (LŒûM) =3 ‚Í‚Ÿ` (LŒûM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( LŒûM ) ( LŒûM ) ‚Í‚Ÿ` ε= ( LŒûM ) ‚Í‚Ÿ` C= ( LŒûM ) ‚Í‚Ÿ` ( LŒûM ) =3 ‚Í‚Ÿ` ( LŒûM ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LŒûM ‚Í‚Ÿ` (LŒûM ) ‚Í‚Ÿ` (LŒûM@) ‚Í‚Ÿ` ε= (LŒûM ‚Í‚Ÿ` ε= (LŒûM ) ‚Í‚Ÿ` ε= (LŒûM@) ‚Í‚Ÿ` C= (LŒûM ‚Í‚Ÿ` C= (LŒûM ) ‚Í‚Ÿ` C= (LŒûM@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
LŒûM) ‚Í‚Ÿ` ( LŒûM) ‚Í‚Ÿ` (@LŒûM) ‚Í‚Ÿ` LŒûM) =3 ‚Í‚Ÿ` ( LŒûM) =3 ‚Í‚Ÿ` (@LŒûM) =3 ‚Í‚Ÿ` LŒûM) =‚R ‚Í‚Ÿ` ( LŒûM) =‚R ‚Í‚Ÿ` (@LŒûM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;LŒûM;)
‚Í‚Ÿ` (GLŒûMG) (;LŒûM;) ‚Í‚Ÿ` (GLŒûMG) ‚Í‚Ÿ` ε= (;LŒûM;) ‚Í‚Ÿ` ε= (GLŒûMG) ‚Í‚Ÿ` C= (;LŒûM;) ‚Í‚Ÿ` C= (GLŒûMG) ‚Í‚Ÿ` (;LŒûM;) =3 ‚Í‚Ÿ` (GLŒûMG) =3 ‚Í‚Ÿ` (;LŒûM;) =‚R ‚Í‚Ÿ` (GLŒûMG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LŒûM; ‚Í‚Ÿ`
(LŒûMG ‚Í‚Ÿ` (LŒûM;) ‚Í‚Ÿ` (LŒûM; ) ‚Í‚Ÿ` (LŒûMG) ‚Í‚Ÿ` ε= (LŒûM; ‚Í‚Ÿ` ε= (LŒûMG ‚Í‚Ÿ` ε= (LŒûM;) ‚Í‚Ÿ` ε= (LŒûM; ) ‚Í‚Ÿ` ε= (LŒûMG) ‚Í‚Ÿ` C= (LŒûM; ‚Í‚Ÿ` C= (LŒûMG ‚Í‚Ÿ` C= (LŒûM;) ‚Í‚Ÿ` C= (LŒûM; ) ‚Í‚Ÿ` C= (LŒûMG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;LŒûM) ‚Í‚Ÿ`
GLŒûM) ‚Í‚Ÿ` (;LŒûM) ‚Í‚Ÿ` ( ;LŒûM) ‚Í‚Ÿ` (GLŒûM) ‚Í‚Ÿ` ;LŒûM) =3 ‚Í‚Ÿ` GLŒûM) =3 ‚Í‚Ÿ` (;LŒûM) =3 ‚Í‚Ÿ` ( ;LŒûM) =3 ‚Í‚Ÿ` (GLŒûM) =3 ‚Í‚Ÿ` ;LŒûM) =‚R ‚Í‚Ÿ` GLŒûM) =‚R ‚Í‚Ÿ` (;LŒûM) =‚R ‚Í‚Ÿ` ( ;LŒûM) =‚R ‚Í‚Ÿ` (GLŒûM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*LŒûM*)
‚Í‚Ÿ` (–LŒûM–) (*LŒûM*) ‚Í‚Ÿ` (–LŒûM–) ‚Í‚Ÿ` ε= (*LŒûM*) ‚Í‚Ÿ` ε= (–LŒûM–) ‚Í‚Ÿ` C= (*LŒûM*) ‚Í‚Ÿ` C= (–LŒûM–) ‚Í‚Ÿ` (*LŒûM*) =3 ‚Í‚Ÿ` (–LŒûM–) =3 ‚Í‚Ÿ` (*LŒûM*) =‚R ‚Í‚Ÿ` (–LŒûM–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LŒûM* ‚Í‚Ÿ`
(LŒûM– ‚Í‚Ÿ` (LŒûM*) ‚Í‚Ÿ` (LŒûM–) ‚Í‚Ÿ` ε= (LŒûM* ‚Í‚Ÿ` ε= (LŒûM– ‚Í‚Ÿ` ε= (LŒûM*) ‚Í‚Ÿ` ε= (LŒûM–) ‚Í‚Ÿ` C= (LŒûM* ‚Í‚Ÿ` C= (LŒûM– ‚Í‚Ÿ` C= (LŒûM*) ‚Í‚Ÿ` C= (LŒûM–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*LŒûM) ‚Í‚Ÿ`
–LŒûM) ‚Í‚Ÿ` (*LŒûM) ‚Í‚Ÿ` (–LŒûM) ‚Í‚Ÿ` *LŒûM) =3 ‚Í‚Ÿ` –LŒûM) =3 ‚Í‚Ÿ` (*LŒûM) =3 ‚Í‚Ÿ` (–LŒûM) =3 ‚Í‚Ÿ` *LŒûM) =‚R ‚Í‚Ÿ` –LŒûM) =‚R ‚Í‚Ÿ` (*LŒûM) =‚R ‚Í‚Ÿ` (–LŒûM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VLŒûMV) (VLŒûMV) ‚Í‚Ÿ` ε= (VLŒûMV) ‚Í‚Ÿ` C= (VLŒûMV) ‚Í‚Ÿ` (VLŒûMV) =3 ‚Í‚Ÿ` (VLŒûMV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(LŒûMV ‚Í‚Ÿ` (LŒûMV) ‚Í‚Ÿ` ε= (LŒûMV ‚Í‚Ÿ` ε= (LŒûMV) ‚Í‚Ÿ` C= (LŒûMV ‚Í‚Ÿ` C= (LŒûMV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VLŒûM) ‚Í‚Ÿ` (VLŒûM) ‚Í‚Ÿ` VLŒûM) =3 ‚Í‚Ÿ` (VLŒûM) =3 ‚Í‚Ÿ` VLŒûM) =‚R ‚Í‚Ÿ` (VLŒûM) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (L¢M) (L¢M) ‚Í‚Ÿ` ε= (L¢M) ‚Í‚Ÿ` C= (L¢M) ‚Í‚Ÿ` (L¢M) =3 ‚Í‚Ÿ` (L¢M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( L¢M ) ( L¢M ) ‚Í‚Ÿ` ε= ( L¢M ) ‚Í‚Ÿ` C= ( L¢M ) ‚Í‚Ÿ` ( L¢M ) =3 ‚Í‚Ÿ` ( L¢M ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L¢M ‚Í‚Ÿ` (L¢M ) ‚Í‚Ÿ` (L¢M@) ‚Í‚Ÿ` ε= (L¢M ‚Í‚Ÿ` ε= (L¢M ) ‚Í‚Ÿ` ε= (L¢M@) ‚Í‚Ÿ` C= (L¢M ‚Í‚Ÿ` C= (L¢M ) ‚Í‚Ÿ` C= (L¢M@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
L¢M) ‚Í‚Ÿ` ( L¢M) ‚Í‚Ÿ` (@L¢M) ‚Í‚Ÿ` L¢M) =3 ‚Í‚Ÿ` ( L¢M) =3 ‚Í‚Ÿ` (@L¢M) =3 ‚Í‚Ÿ` L¢M) =‚R ‚Í‚Ÿ` ( L¢M) =‚R ‚Í‚Ÿ` (@L¢M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;L¢M;)
‚Í‚Ÿ` (GL¢MG) (;L¢M;) ‚Í‚Ÿ` (GL¢MG) ‚Í‚Ÿ` ε= (;L¢M;) ‚Í‚Ÿ` ε= (GL¢MG) ‚Í‚Ÿ` C= (;L¢M;) ‚Í‚Ÿ` C= (GL¢MG) ‚Í‚Ÿ` (;L¢M;) =3 ‚Í‚Ÿ` (GL¢MG) =3 ‚Í‚Ÿ` (;L¢M;) =‚R ‚Í‚Ÿ` (GL¢MG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L¢M; ‚Í‚Ÿ`
(L¢MG ‚Í‚Ÿ` (L¢M;) ‚Í‚Ÿ` (L¢M; ) ‚Í‚Ÿ` (L¢MG) ‚Í‚Ÿ` ε= (L¢M; ‚Í‚Ÿ` ε= (L¢MG ‚Í‚Ÿ` ε= (L¢M;) ‚Í‚Ÿ` ε= (L¢M; ) ‚Í‚Ÿ` ε= (L¢MG) ‚Í‚Ÿ` C= (L¢M; ‚Í‚Ÿ` C= (L¢MG ‚Í‚Ÿ` C= (L¢M;) ‚Í‚Ÿ` C= (L¢M; ) ‚Í‚Ÿ` C= (L¢MG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;L¢M) ‚Í‚Ÿ`
GL¢M) ‚Í‚Ÿ` (;L¢M) ‚Í‚Ÿ` ( ;L¢M) ‚Í‚Ÿ` (GL¢M) ‚Í‚Ÿ` ;L¢M) =3 ‚Í‚Ÿ` GL¢M) =3 ‚Í‚Ÿ` (;L¢M) =3 ‚Í‚Ÿ` ( ;L¢M) =3 ‚Í‚Ÿ` (GL¢M) =3 ‚Í‚Ÿ` ;L¢M) =‚R ‚Í‚Ÿ` GL¢M) =‚R ‚Í‚Ÿ` (;L¢M) =‚R ‚Í‚Ÿ` ( ;L¢M) =‚R ‚Í‚Ÿ` (GL¢M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*L¢M*)
‚Í‚Ÿ` (–L¢M–) (*L¢M*) ‚Í‚Ÿ` (–L¢M–) ‚Í‚Ÿ` ε= (*L¢M*) ‚Í‚Ÿ` ε= (–L¢M–) ‚Í‚Ÿ` C= (*L¢M*) ‚Í‚Ÿ` C= (–L¢M–) ‚Í‚Ÿ` (*L¢M*) =3 ‚Í‚Ÿ` (–L¢M–) =3 ‚Í‚Ÿ` (*L¢M*) =‚R ‚Í‚Ÿ` (–L¢M–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L¢M* ‚Í‚Ÿ`
(L¢M– ‚Í‚Ÿ` (L¢M*) ‚Í‚Ÿ` (L¢M–) ‚Í‚Ÿ` ε= (L¢M* ‚Í‚Ÿ` ε= (L¢M– ‚Í‚Ÿ` ε= (L¢M*) ‚Í‚Ÿ` ε= (L¢M–) ‚Í‚Ÿ` C= (L¢M* ‚Í‚Ÿ` C= (L¢M– ‚Í‚Ÿ` C= (L¢M*) ‚Í‚Ÿ` C= (L¢M–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*L¢M) ‚Í‚Ÿ`
–L¢M) ‚Í‚Ÿ` (*L¢M) ‚Í‚Ÿ` (–L¢M) ‚Í‚Ÿ` *L¢M) =3 ‚Í‚Ÿ` –L¢M) =3 ‚Í‚Ÿ` (*L¢M) =3 ‚Í‚Ÿ` (–L¢M) =3 ‚Í‚Ÿ` *L¢M) =‚R ‚Í‚Ÿ` –L¢M) =‚R ‚Í‚Ÿ` (*L¢M) =‚R ‚Í‚Ÿ` (–L¢M) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VL¢MV) (VL¢MV) ‚Í‚Ÿ` ε= (VL¢MV) ‚Í‚Ÿ` C= (VL¢MV) ‚Í‚Ÿ` (VL¢MV) =3 ‚Í‚Ÿ` (VL¢MV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(L¢MV ‚Í‚Ÿ` (L¢MV) ‚Í‚Ÿ` ε= (L¢MV ‚Í‚Ÿ` ε= (L¢MV) ‚Í‚Ÿ` C= (L¢MV ‚Í‚Ÿ` C= (L¢MV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VL¢M) ‚Í‚Ÿ` (VL¢M) ‚Í‚Ÿ` VL¢M) =3 ‚Í‚Ÿ` (VL¢M) =3 ‚Í‚Ÿ` VL¢M) =‚R ‚Í‚Ÿ` (VL¢M) =‚R ‚Í‚Ÿ` |
→ Šç•¶ŽšƒiƒrEƒgƒbƒvƒy[ƒW |