–ß‚éƒ{ƒ^ƒ“
 
 
‚Í‚Ÿ` (VoV)

(VoV) ‚Í‚Ÿ`

ε= (VoV) ‚Í‚Ÿ`

C= (VoV) ‚Í‚Ÿ`

(VoV) =3 ‚Í‚Ÿ`

(VoV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( VoV )

( VoV ) ‚Í‚Ÿ`

ε= ( VoV ) ‚Í‚Ÿ`

C= ( VoV ) ‚Í‚Ÿ`

( VoV ) =3 ‚Í‚Ÿ`

( VoV ) =‚R ‚Í‚Ÿ`
(VoV ‚Í‚Ÿ`

(VoV ) ‚Í‚Ÿ`

(VoV@) ‚Í‚Ÿ`

ε= (VoV ‚Í‚Ÿ`

ε= (VoV ) ‚Í‚Ÿ`

ε= (VoV@) ‚Í‚Ÿ`

C= (VoV ‚Í‚Ÿ`

C= (VoV ) ‚Í‚Ÿ`

C= (VoV@) ‚Í‚Ÿ`
VoV) ‚Í‚Ÿ`

( VoV) ‚Í‚Ÿ`

(@VoV) ‚Í‚Ÿ`

VoV) =3 ‚Í‚Ÿ`
( VoV) =3 ‚Í‚Ÿ`
(@VoV) =3 ‚Í‚Ÿ`

VoV) =‚R ‚Í‚Ÿ`

( VoV) =‚R ‚Í‚Ÿ`

(@VoV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;VoV;)
‚Í‚Ÿ` (GVoVG)

(;VoV;) ‚Í‚Ÿ`

(GVoVG) ‚Í‚Ÿ`

ε= (;VoV;) ‚Í‚Ÿ`
ε= (GVoVG) ‚Í‚Ÿ`

C= (;VoV;) ‚Í‚Ÿ`

C= (GVoVG) ‚Í‚Ÿ`

(;VoV;) =3 ‚Í‚Ÿ`

(GVoVG) =3 ‚Í‚Ÿ`

(;VoV;) =‚R ‚Í‚Ÿ`

(GVoVG) =‚R ‚Í‚Ÿ`
(VoV; ‚Í‚Ÿ`
(VoVG ‚Í‚Ÿ`

(VoV;) ‚Í‚Ÿ`

(VoV; ) ‚Í‚Ÿ`

(VoVG) ‚Í‚Ÿ`

ε= (VoV; ‚Í‚Ÿ`

ε= (VoVG ‚Í‚Ÿ`

ε= (VoV;) ‚Í‚Ÿ`

ε= (VoV; ) ‚Í‚Ÿ`

ε= (VoVG) ‚Í‚Ÿ`

C= (VoV; ‚Í‚Ÿ`

C= (VoVG ‚Í‚Ÿ`

C= (VoV;) ‚Í‚Ÿ`

C= (VoV; ) ‚Í‚Ÿ`

C= (VoVG) ‚Í‚Ÿ`
;VoV) ‚Í‚Ÿ`
GVoV) ‚Í‚Ÿ`

(;VoV) ‚Í‚Ÿ`

( ;VoV) ‚Í‚Ÿ`

(GVoV) ‚Í‚Ÿ`

;VoV) =3 ‚Í‚Ÿ`

GVoV) =3 ‚Í‚Ÿ`
(;VoV) =3 ‚Í‚Ÿ`
( ;VoV) =3 ‚Í‚Ÿ`
(GVoV) =3 ‚Í‚Ÿ`

;VoV) =‚R ‚Í‚Ÿ`

GVoV) =‚R ‚Í‚Ÿ`

(;VoV) =‚R ‚Í‚Ÿ`

( ;VoV) =‚R ‚Í‚Ÿ`

(GVoV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*VoV*)
‚Í‚Ÿ` (–VoV–)

(*VoV*) ‚Í‚Ÿ`

(–VoV–) ‚Í‚Ÿ`

ε= (*VoV*) ‚Í‚Ÿ`
ε= (–VoV–) ‚Í‚Ÿ`

C= (*VoV*) ‚Í‚Ÿ`

C= (–VoV–) ‚Í‚Ÿ`

(*VoV*) =3 ‚Í‚Ÿ`

(–VoV–) =3 ‚Í‚Ÿ`

(*VoV*) =‚R ‚Í‚Ÿ`

(–VoV–) =‚R ‚Í‚Ÿ`
(VoV* ‚Í‚Ÿ`
(VoV– ‚Í‚Ÿ`

(VoV*) ‚Í‚Ÿ`

(VoV–) ‚Í‚Ÿ`

ε= (VoV* ‚Í‚Ÿ`

ε= (VoV– ‚Í‚Ÿ`

ε= (VoV*) ‚Í‚Ÿ`

ε= (VoV–) ‚Í‚Ÿ`

C= (VoV* ‚Í‚Ÿ`

C= (VoV– ‚Í‚Ÿ`

C= (VoV*) ‚Í‚Ÿ`

C= (VoV–) ‚Í‚Ÿ`
*VoV) ‚Í‚Ÿ`
–VoV) ‚Í‚Ÿ`

(*VoV) ‚Í‚Ÿ`

(–VoV) ‚Í‚Ÿ`

*VoV) =3 ‚Í‚Ÿ`
–VoV) =3 ‚Í‚Ÿ`
(*VoV) =3 ‚Í‚Ÿ`
(–VoV) =3 ‚Í‚Ÿ`

*VoV) =‚R ‚Í‚Ÿ`

–VoV) =‚R ‚Í‚Ÿ`

(*VoV) =‚R ‚Í‚Ÿ`

(–VoV) =‚R ‚Í‚Ÿ`
(VoV— ‚Í‚Ÿ`

(VoV—) ‚Í‚Ÿ`

ε= (VoV— ‚Í‚Ÿ`

ε= (VoV—) ‚Í‚Ÿ`

C= (VoV— ‚Í‚Ÿ`

C= (VoV—) ‚Í‚Ÿ`
—VoV) ‚Í‚Ÿ`

(—VoV) ‚Í‚Ÿ`

—VoV) =3 ‚Í‚Ÿ`
(—VoV) =3 ‚Í‚Ÿ`

—VoV) =‚R ‚Í‚Ÿ`

(—VoV) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (V‚V)

(V‚V) ‚Í‚Ÿ`

ε= (V‚V) ‚Í‚Ÿ`

C= (V‚V) ‚Í‚Ÿ`

(V‚V) =3 ‚Í‚Ÿ`

(V‚V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( V‚V )

( V‚V ) ‚Í‚Ÿ`

ε= ( V‚V ) ‚Í‚Ÿ`

C= ( V‚V ) ‚Í‚Ÿ`

( V‚V ) =3 ‚Í‚Ÿ`

( V‚V ) =‚R ‚Í‚Ÿ`
(V‚V ‚Í‚Ÿ`

(V‚V ) ‚Í‚Ÿ`

(V‚V@) ‚Í‚Ÿ`

ε= (V‚V ‚Í‚Ÿ`

ε= (V‚V ) ‚Í‚Ÿ`

ε= (V‚V@) ‚Í‚Ÿ`

C= (V‚V ‚Í‚Ÿ`

C= (V‚V ) ‚Í‚Ÿ`

C= (V‚V@) ‚Í‚Ÿ`
V‚V) ‚Í‚Ÿ`

( V‚V) ‚Í‚Ÿ`

(@V‚V) ‚Í‚Ÿ`

V‚V) =3 ‚Í‚Ÿ`
( V‚V) =3 ‚Í‚Ÿ`
(@V‚V) =3 ‚Í‚Ÿ`

V‚V) =‚R ‚Í‚Ÿ`

( V‚V) =‚R ‚Í‚Ÿ`

(@V‚V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;V‚V;)
‚Í‚Ÿ` (GV‚VG)

(;V‚V;) ‚Í‚Ÿ`

(GV‚VG) ‚Í‚Ÿ`

ε= (;V‚V;) ‚Í‚Ÿ`
ε= (GV‚VG) ‚Í‚Ÿ`

C= (;V‚V;) ‚Í‚Ÿ`

C= (GV‚VG) ‚Í‚Ÿ`

(;V‚V;) =3 ‚Í‚Ÿ`

(GV‚VG) =3 ‚Í‚Ÿ`

(;V‚V;) =‚R ‚Í‚Ÿ`

(GV‚VG) =‚R ‚Í‚Ÿ`
(V‚V; ‚Í‚Ÿ`
(V‚VG ‚Í‚Ÿ`

(V‚V;) ‚Í‚Ÿ`

(V‚V; ) ‚Í‚Ÿ`

(V‚VG) ‚Í‚Ÿ`

ε= (V‚V; ‚Í‚Ÿ`

ε= (V‚VG ‚Í‚Ÿ`

ε= (V‚V;) ‚Í‚Ÿ`

ε= (V‚V; ) ‚Í‚Ÿ`

ε= (V‚VG) ‚Í‚Ÿ`

C= (V‚V; ‚Í‚Ÿ`

C= (V‚VG ‚Í‚Ÿ`

C= (V‚V;) ‚Í‚Ÿ`

C= (V‚V; ) ‚Í‚Ÿ`

C= (V‚VG) ‚Í‚Ÿ`
;V‚V) ‚Í‚Ÿ`
GV‚V) ‚Í‚Ÿ`

(;V‚V) ‚Í‚Ÿ`

( ;V‚V) ‚Í‚Ÿ`

(GV‚V) ‚Í‚Ÿ`

;V‚V) =3 ‚Í‚Ÿ`

GV‚V) =3 ‚Í‚Ÿ`
(;V‚V) =3 ‚Í‚Ÿ`
( ;V‚V) =3 ‚Í‚Ÿ`
(GV‚V) =3 ‚Í‚Ÿ`

;V‚V) =‚R ‚Í‚Ÿ`

GV‚V) =‚R ‚Í‚Ÿ`

(;V‚V) =‚R ‚Í‚Ÿ`

( ;V‚V) =‚R ‚Í‚Ÿ`

(GV‚V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*V‚V*)
‚Í‚Ÿ` (–V‚V–)

(*V‚V*) ‚Í‚Ÿ`

(–V‚V–) ‚Í‚Ÿ`

ε= (*V‚V*) ‚Í‚Ÿ`
ε= (–V‚V–) ‚Í‚Ÿ`

C= (*V‚V*) ‚Í‚Ÿ`

C= (–V‚V–) ‚Í‚Ÿ`

(*V‚V*) =3 ‚Í‚Ÿ`

(–V‚V–) =3 ‚Í‚Ÿ`

(*V‚V*) =‚R ‚Í‚Ÿ`

(–V‚V–) =‚R ‚Í‚Ÿ`
(V‚V* ‚Í‚Ÿ`
(V‚V– ‚Í‚Ÿ`

(V‚V*) ‚Í‚Ÿ`

(V‚V–) ‚Í‚Ÿ`

ε= (V‚V* ‚Í‚Ÿ`

ε= (V‚V– ‚Í‚Ÿ`

ε= (V‚V*) ‚Í‚Ÿ`

ε= (V‚V–) ‚Í‚Ÿ`

C= (V‚V* ‚Í‚Ÿ`

C= (V‚V– ‚Í‚Ÿ`

C= (V‚V*) ‚Í‚Ÿ`

C= (V‚V–) ‚Í‚Ÿ`
*V‚V) ‚Í‚Ÿ`
–V‚V) ‚Í‚Ÿ`

(*V‚V) ‚Í‚Ÿ`

(–V‚V) ‚Í‚Ÿ`

*V‚V) =3 ‚Í‚Ÿ`
–V‚V) =3 ‚Í‚Ÿ`
(*V‚V) =3 ‚Í‚Ÿ`
(–V‚V) =3 ‚Í‚Ÿ`

*V‚V) =‚R ‚Í‚Ÿ`

–V‚V) =‚R ‚Í‚Ÿ`

(*V‚V) =‚R ‚Í‚Ÿ`

(–V‚V) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (V0V)

(V0V) ‚Í‚Ÿ`

ε= (V0V) ‚Í‚Ÿ`

C= (V0V) ‚Í‚Ÿ`

(V0V) =3 ‚Í‚Ÿ`

(V0V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( V0V )

( V0V ) ‚Í‚Ÿ`

ε= ( V0V ) ‚Í‚Ÿ`

C= ( V0V ) ‚Í‚Ÿ`

( V0V ) =3 ‚Í‚Ÿ`

( V0V ) =‚R ‚Í‚Ÿ`
(V0V ‚Í‚Ÿ`

(V0V ) ‚Í‚Ÿ`

(V0V@) ‚Í‚Ÿ`

ε= (V0V ‚Í‚Ÿ`

ε= (V0V ) ‚Í‚Ÿ`

ε= (V0V@) ‚Í‚Ÿ`

C= (V0V ‚Í‚Ÿ`

C= (V0V ) ‚Í‚Ÿ`

C= (V0V@) ‚Í‚Ÿ`
V0V) ‚Í‚Ÿ`

( V0V) ‚Í‚Ÿ`

(@V0V) ‚Í‚Ÿ`

V0V) =3 ‚Í‚Ÿ`
( V0V) =3 ‚Í‚Ÿ`
(@V0V) =3 ‚Í‚Ÿ`

V0V) =‚R ‚Í‚Ÿ`

( V0V) =‚R ‚Í‚Ÿ`

(@V0V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;V0V;)
‚Í‚Ÿ` (GV0VG)

(;V0V;) ‚Í‚Ÿ`

(GV0VG) ‚Í‚Ÿ`

ε= (;V0V;) ‚Í‚Ÿ`
ε= (GV0VG) ‚Í‚Ÿ`

C= (;V0V;) ‚Í‚Ÿ`

C= (GV0VG) ‚Í‚Ÿ`

(;V0V;) =3 ‚Í‚Ÿ`

(GV0VG) =3 ‚Í‚Ÿ`

(;V0V;) =‚R ‚Í‚Ÿ`

(GV0VG) =‚R ‚Í‚Ÿ`
(V0V; ‚Í‚Ÿ`
(V0VG ‚Í‚Ÿ`

(V0V;) ‚Í‚Ÿ`

(V0V; ) ‚Í‚Ÿ`

(V0VG) ‚Í‚Ÿ`

ε= (V0V; ‚Í‚Ÿ`

ε= (V0VG ‚Í‚Ÿ`

ε= (V0V;) ‚Í‚Ÿ`

ε= (V0V; ) ‚Í‚Ÿ`

ε= (V0VG) ‚Í‚Ÿ`

C= (V0V; ‚Í‚Ÿ`

C= (V0VG ‚Í‚Ÿ`

C= (V0V;) ‚Í‚Ÿ`

C= (V0V; ) ‚Í‚Ÿ`

C= (V0VG) ‚Í‚Ÿ`
;V0V) ‚Í‚Ÿ`
GV0V) ‚Í‚Ÿ`

(;V0V) ‚Í‚Ÿ`

( ;V0V) ‚Í‚Ÿ`

(GV0V) ‚Í‚Ÿ`

;V0V) =3 ‚Í‚Ÿ`

GV0V) =3 ‚Í‚Ÿ`
(;V0V) =3 ‚Í‚Ÿ`
( ;V0V) =3 ‚Í‚Ÿ`
(GV0V) =3 ‚Í‚Ÿ`

;V0V) =‚R ‚Í‚Ÿ`

GV0V) =‚R ‚Í‚Ÿ`

(;V0V) =‚R ‚Í‚Ÿ`

( ;V0V) =‚R ‚Í‚Ÿ`

(GV0V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*V0V*)
‚Í‚Ÿ` (–V0V–)

(*V0V*) ‚Í‚Ÿ`

(–V0V–) ‚Í‚Ÿ`

ε= (*V0V*) ‚Í‚Ÿ`
ε= (–V0V–) ‚Í‚Ÿ`

C= (*V0V*) ‚Í‚Ÿ`

C= (–V0V–) ‚Í‚Ÿ`

(*V0V*) =3 ‚Í‚Ÿ`

(–V0V–) =3 ‚Í‚Ÿ`

(*V0V*) =‚R ‚Í‚Ÿ`

(–V0V–) =‚R ‚Í‚Ÿ`
(V0V* ‚Í‚Ÿ`
(V0V– ‚Í‚Ÿ`

(V0V*) ‚Í‚Ÿ`

(V0V–) ‚Í‚Ÿ`

ε= (V0V* ‚Í‚Ÿ`

ε= (V0V– ‚Í‚Ÿ`

ε= (V0V*) ‚Í‚Ÿ`

ε= (V0V–) ‚Í‚Ÿ`

C= (V0V* ‚Í‚Ÿ`

C= (V0V– ‚Í‚Ÿ`

C= (V0V*) ‚Í‚Ÿ`

C= (V0V–) ‚Í‚Ÿ`
*V0V) ‚Í‚Ÿ`
–V0V) ‚Í‚Ÿ`

(*V0V) ‚Í‚Ÿ`

(–V0V) ‚Í‚Ÿ`

*V0V) =3 ‚Í‚Ÿ`
–V0V) =3 ‚Í‚Ÿ`
(*V0V) =3 ‚Í‚Ÿ`
(–V0V) =3 ‚Í‚Ÿ`

*V0V) =‚R ‚Í‚Ÿ`

–V0V) =‚R ‚Í‚Ÿ`

(*V0V) =‚R ‚Í‚Ÿ`

(–V0V) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (V‚OV)

(V‚OV) ‚Í‚Ÿ`

ε= (V‚OV) ‚Í‚Ÿ`

C= (V‚OV) ‚Í‚Ÿ`

(V‚OV) =3 ‚Í‚Ÿ`

(V‚OV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( V‚OV )

( V‚OV ) ‚Í‚Ÿ`

ε= ( V‚OV ) ‚Í‚Ÿ`

C= ( V‚OV ) ‚Í‚Ÿ`

( V‚OV ) =3 ‚Í‚Ÿ`

( V‚OV ) =‚R ‚Í‚Ÿ`
(V‚OV ‚Í‚Ÿ`

(V‚OV ) ‚Í‚Ÿ`

(V‚OV@) ‚Í‚Ÿ`

ε= (V‚OV ‚Í‚Ÿ`

ε= (V‚OV ) ‚Í‚Ÿ`

ε= (V‚OV@) ‚Í‚Ÿ`

C= (V‚OV ‚Í‚Ÿ`

C= (V‚OV ) ‚Í‚Ÿ`

C= (V‚OV@) ‚Í‚Ÿ`
V‚OV) ‚Í‚Ÿ`

( V‚OV) ‚Í‚Ÿ`

(@V‚OV) ‚Í‚Ÿ`

V‚OV) =3 ‚Í‚Ÿ`
( V‚OV) =3 ‚Í‚Ÿ`
(@V‚OV) =3 ‚Í‚Ÿ`

V‚OV) =‚R ‚Í‚Ÿ`

( V‚OV) =‚R ‚Í‚Ÿ`

(@V‚OV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;V‚OV;)
‚Í‚Ÿ` (GV‚OVG)

(;V‚OV;) ‚Í‚Ÿ`

(GV‚OVG) ‚Í‚Ÿ`

ε= (;V‚OV;) ‚Í‚Ÿ`
ε= (GV‚OVG) ‚Í‚Ÿ`

C= (;V‚OV;) ‚Í‚Ÿ`

C= (GV‚OVG) ‚Í‚Ÿ`

(;V‚OV;) =3 ‚Í‚Ÿ`

(GV‚OVG) =3 ‚Í‚Ÿ`

(;V‚OV;) =‚R ‚Í‚Ÿ`

(GV‚OVG) =‚R ‚Í‚Ÿ`
(V‚OV; ‚Í‚Ÿ`
(V‚OVG ‚Í‚Ÿ`

(V‚OV;) ‚Í‚Ÿ`

(V‚OV; ) ‚Í‚Ÿ`

(V‚OVG) ‚Í‚Ÿ`

ε= (V‚OV; ‚Í‚Ÿ`

ε= (V‚OVG ‚Í‚Ÿ`

ε= (V‚OV;) ‚Í‚Ÿ`

ε= (V‚OV; ) ‚Í‚Ÿ`

ε= (V‚OVG) ‚Í‚Ÿ`

C= (V‚OV; ‚Í‚Ÿ`

C= (V‚OVG ‚Í‚Ÿ`

C= (V‚OV;) ‚Í‚Ÿ`

C= (V‚OV; ) ‚Í‚Ÿ`

C= (V‚OVG) ‚Í‚Ÿ`
;V‚OV) ‚Í‚Ÿ`
GV‚OV) ‚Í‚Ÿ`

(;V‚OV) ‚Í‚Ÿ`

( ;V‚OV) ‚Í‚Ÿ`

(GV‚OV) ‚Í‚Ÿ`

;V‚OV) =3 ‚Í‚Ÿ`

GV‚OV) =3 ‚Í‚Ÿ`
(;V‚OV) =3 ‚Í‚Ÿ`
( ;V‚OV) =3 ‚Í‚Ÿ`
(GV‚OV) =3 ‚Í‚Ÿ`

;V‚OV) =‚R ‚Í‚Ÿ`

GV‚OV) =‚R ‚Í‚Ÿ`

(;V‚OV) =‚R ‚Í‚Ÿ`

( ;V‚OV) =‚R ‚Í‚Ÿ`

(GV‚OV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*V‚OV*)
‚Í‚Ÿ` (–V‚OV–)

(*V‚OV*) ‚Í‚Ÿ`

(–V‚OV–) ‚Í‚Ÿ`

ε= (*V‚OV*) ‚Í‚Ÿ`
ε= (–V‚OV–) ‚Í‚Ÿ`

C= (*V‚OV*) ‚Í‚Ÿ`

C= (–V‚OV–) ‚Í‚Ÿ`

(*V‚OV*) =3 ‚Í‚Ÿ`

(–V‚OV–) =3 ‚Í‚Ÿ`

(*V‚OV*) =‚R ‚Í‚Ÿ`

(–V‚OV–) =‚R ‚Í‚Ÿ`
(V‚OV* ‚Í‚Ÿ`
(V‚OV– ‚Í‚Ÿ`

(V‚OV*) ‚Í‚Ÿ`

(V‚OV–) ‚Í‚Ÿ`

ε= (V‚OV* ‚Í‚Ÿ`

ε= (V‚OV– ‚Í‚Ÿ`

ε= (V‚OV*) ‚Í‚Ÿ`

ε= (V‚OV–) ‚Í‚Ÿ`

C= (V‚OV* ‚Í‚Ÿ`

C= (V‚OV– ‚Í‚Ÿ`

C= (V‚OV*) ‚Í‚Ÿ`

C= (V‚OV–) ‚Í‚Ÿ`
*V‚OV) ‚Í‚Ÿ`
–V‚OV) ‚Í‚Ÿ`

(*V‚OV) ‚Í‚Ÿ`

(–V‚OV) ‚Í‚Ÿ`

*V‚OV) =3 ‚Í‚Ÿ`
–V‚OV) =3 ‚Í‚Ÿ`
(*V‚OV) =3 ‚Í‚Ÿ`
(–V‚OV) =3 ‚Í‚Ÿ`

*V‚OV) =‚R ‚Í‚Ÿ`

–V‚OV) =‚R ‚Í‚Ÿ`

(*V‚OV) =‚R ‚Í‚Ÿ`

(–V‚OV) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (V‚nV)

(V‚nV) ‚Í‚Ÿ`

ε= (V‚nV) ‚Í‚Ÿ`

C= (V‚nV) ‚Í‚Ÿ`

(V‚nV) =3 ‚Í‚Ÿ`

(V‚nV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( V‚nV )

( V‚nV ) ‚Í‚Ÿ`

ε= ( V‚nV ) ‚Í‚Ÿ`

C= ( V‚nV ) ‚Í‚Ÿ`

( V‚nV ) =3 ‚Í‚Ÿ`

( V‚nV ) =‚R ‚Í‚Ÿ`
(V‚nV ‚Í‚Ÿ`

(V‚nV ) ‚Í‚Ÿ`

(V‚nV@) ‚Í‚Ÿ`

ε= (V‚nV ‚Í‚Ÿ`

ε= (V‚nV ) ‚Í‚Ÿ`

ε= (V‚nV@) ‚Í‚Ÿ`

C= (V‚nV ‚Í‚Ÿ`

C= (V‚nV ) ‚Í‚Ÿ`

C= (V‚nV@) ‚Í‚Ÿ`
V‚nV) ‚Í‚Ÿ`

( V‚nV) ‚Í‚Ÿ`

(@V‚nV) ‚Í‚Ÿ`

V‚nV) =3 ‚Í‚Ÿ`
( V‚nV) =3 ‚Í‚Ÿ`
(@V‚nV) =3 ‚Í‚Ÿ`

V‚nV) =‚R ‚Í‚Ÿ`

( V‚nV) =‚R ‚Í‚Ÿ`

(@V‚nV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;V‚nV;)
‚Í‚Ÿ` (GV‚nVG)

(;V‚nV;) ‚Í‚Ÿ`

(GV‚nVG) ‚Í‚Ÿ`

ε= (;V‚nV;) ‚Í‚Ÿ`
ε= (GV‚nVG) ‚Í‚Ÿ`

C= (;V‚nV;) ‚Í‚Ÿ`

C= (GV‚nVG) ‚Í‚Ÿ`

(;V‚nV;) =3 ‚Í‚Ÿ`

(GV‚nVG) =3 ‚Í‚Ÿ`

(;V‚nV;) =‚R ‚Í‚Ÿ`

(GV‚nVG) =‚R ‚Í‚Ÿ`
(V‚nV; ‚Í‚Ÿ`
(V‚nVG ‚Í‚Ÿ`

(V‚nV;) ‚Í‚Ÿ`

(V‚nV; ) ‚Í‚Ÿ`

(V‚nVG) ‚Í‚Ÿ`

ε= (V‚nV; ‚Í‚Ÿ`

ε= (V‚nVG ‚Í‚Ÿ`

ε= (V‚nV;) ‚Í‚Ÿ`

ε= (V‚nV; ) ‚Í‚Ÿ`

ε= (V‚nVG) ‚Í‚Ÿ`

C= (V‚nV; ‚Í‚Ÿ`

C= (V‚nVG ‚Í‚Ÿ`

C= (V‚nV;) ‚Í‚Ÿ`

C= (V‚nV; ) ‚Í‚Ÿ`

C= (V‚nVG) ‚Í‚Ÿ`
;V‚nV) ‚Í‚Ÿ`
GV‚nV) ‚Í‚Ÿ`

(;V‚nV) ‚Í‚Ÿ`

( ;V‚nV) ‚Í‚Ÿ`

(GV‚nV) ‚Í‚Ÿ`

;V‚nV) =3 ‚Í‚Ÿ`

GV‚nV) =3 ‚Í‚Ÿ`
(;V‚nV) =3 ‚Í‚Ÿ`
( ;V‚nV) =3 ‚Í‚Ÿ`
(GV‚nV) =3 ‚Í‚Ÿ`

;V‚nV) =‚R ‚Í‚Ÿ`

GV‚nV) =‚R ‚Í‚Ÿ`

(;V‚nV) =‚R ‚Í‚Ÿ`

( ;V‚nV) =‚R ‚Í‚Ÿ`

(GV‚nV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*V‚nV*)
‚Í‚Ÿ` (–V‚nV–)

(*V‚nV*) ‚Í‚Ÿ`

(–V‚nV–) ‚Í‚Ÿ`

ε= (*V‚nV*) ‚Í‚Ÿ`
ε= (–V‚nV–) ‚Í‚Ÿ`

C= (*V‚nV*) ‚Í‚Ÿ`

C= (–V‚nV–) ‚Í‚Ÿ`

(*V‚nV*) =3 ‚Í‚Ÿ`

(–V‚nV–) =3 ‚Í‚Ÿ`

(*V‚nV*) =‚R ‚Í‚Ÿ`

(–V‚nV–) =‚R ‚Í‚Ÿ`
(V‚nV* ‚Í‚Ÿ`
(V‚nV– ‚Í‚Ÿ`

(V‚nV*) ‚Í‚Ÿ`

(V‚nV–) ‚Í‚Ÿ`

ε= (V‚nV* ‚Í‚Ÿ`

ε= (V‚nV– ‚Í‚Ÿ`

ε= (V‚nV*) ‚Í‚Ÿ`

ε= (V‚nV–) ‚Í‚Ÿ`

C= (V‚nV* ‚Í‚Ÿ`

C= (V‚nV– ‚Í‚Ÿ`

C= (V‚nV*) ‚Í‚Ÿ`

C= (V‚nV–) ‚Í‚Ÿ`
*V‚nV) ‚Í‚Ÿ`
–V‚nV) ‚Í‚Ÿ`

(*V‚nV) ‚Í‚Ÿ`

(–V‚nV) ‚Í‚Ÿ`

*V‚nV) =3 ‚Í‚Ÿ`
–V‚nV) =3 ‚Í‚Ÿ`
(*V‚nV) =3 ‚Í‚Ÿ`
(–V‚nV) =3 ‚Í‚Ÿ`

*V‚nV) =‚R ‚Í‚Ÿ`

–V‚nV) =‚R ‚Í‚Ÿ`

(*V‚nV) =‚R ‚Í‚Ÿ`

(–V‚nV) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (V∇V)

(V∇V) ‚Í‚Ÿ`

ε= (V∇V) ‚Í‚Ÿ`

C= (V∇V) ‚Í‚Ÿ`

(V∇V) =3 ‚Í‚Ÿ`

(V∇V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( V∇V )

( V∇V ) ‚Í‚Ÿ`

ε= ( V∇V ) ‚Í‚Ÿ`

C= ( V∇V ) ‚Í‚Ÿ`

( V∇V ) =3 ‚Í‚Ÿ`

( V∇V ) =‚R ‚Í‚Ÿ`
(V∇V ‚Í‚Ÿ`

(V∇V ) ‚Í‚Ÿ`

(V∇V@) ‚Í‚Ÿ`

ε= (V∇V ‚Í‚Ÿ`

ε= (V∇V ) ‚Í‚Ÿ`

ε= (V∇V@) ‚Í‚Ÿ`

C= (V∇V ‚Í‚Ÿ`

C= (V∇V ) ‚Í‚Ÿ`

C= (V∇V@) ‚Í‚Ÿ`
V∇V) ‚Í‚Ÿ`

( V∇V) ‚Í‚Ÿ`

(@V∇V) ‚Í‚Ÿ`

V∇V) =3 ‚Í‚Ÿ`
( V∇V) =3 ‚Í‚Ÿ`
(@V∇V) =3 ‚Í‚Ÿ`

V∇V) =‚R ‚Í‚Ÿ`

( V∇V) =‚R ‚Í‚Ÿ`

(@V∇V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;V∇V;)
‚Í‚Ÿ` (GV∇VG)

(;V∇V;) ‚Í‚Ÿ`

(GV∇VG) ‚Í‚Ÿ`

ε= (;V∇V;) ‚Í‚Ÿ`
ε= (GV∇VG) ‚Í‚Ÿ`

C= (;V∇V;) ‚Í‚Ÿ`

C= (GV∇VG) ‚Í‚Ÿ`

(;V∇V;) =3 ‚Í‚Ÿ`

(GV∇VG) =3 ‚Í‚Ÿ`

(;V∇V;) =‚R ‚Í‚Ÿ`

(GV∇VG) =‚R ‚Í‚Ÿ`
(V∇V; ‚Í‚Ÿ`
(V∇VG ‚Í‚Ÿ`

(V∇V;) ‚Í‚Ÿ`

(V∇V; ) ‚Í‚Ÿ`

(V∇VG) ‚Í‚Ÿ`

ε= (V∇V; ‚Í‚Ÿ`

ε= (V∇VG ‚Í‚Ÿ`

ε= (V∇V;) ‚Í‚Ÿ`

ε= (V∇V; ) ‚Í‚Ÿ`

ε= (V∇VG) ‚Í‚Ÿ`

C= (V∇V; ‚Í‚Ÿ`

C= (V∇VG ‚Í‚Ÿ`

C= (V∇V;) ‚Í‚Ÿ`

C= (V∇V; ) ‚Í‚Ÿ`

C= (V∇VG) ‚Í‚Ÿ`
;V∇V) ‚Í‚Ÿ`
GV∇V) ‚Í‚Ÿ`

(;V∇V) ‚Í‚Ÿ`

( ;V∇V) ‚Í‚Ÿ`

(GV∇V) ‚Í‚Ÿ`

;V∇V) =3 ‚Í‚Ÿ`

GV∇V) =3 ‚Í‚Ÿ`
(;V∇V) =3 ‚Í‚Ÿ`
( ;V∇V) =3 ‚Í‚Ÿ`
(GV∇V) =3 ‚Í‚Ÿ`

;V∇V) =‚R ‚Í‚Ÿ`

GV∇V) =‚R ‚Í‚Ÿ`

(;V∇V) =‚R ‚Í‚Ÿ`

( ;V∇V) =‚R ‚Í‚Ÿ`

(GV∇V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*V∇V*)
‚Í‚Ÿ` (–V∇V–)

(*V∇V*) ‚Í‚Ÿ`

(–V∇V–) ‚Í‚Ÿ`

ε= (*V∇V*) ‚Í‚Ÿ`
ε= (–V∇V–) ‚Í‚Ÿ`

C= (*V∇V*) ‚Í‚Ÿ`

C= (–V∇V–) ‚Í‚Ÿ`

(*V∇V*) =3 ‚Í‚Ÿ`

(–V∇V–) =3 ‚Í‚Ÿ`

(*V∇V*) =‚R ‚Í‚Ÿ`

(–V∇V–) =‚R ‚Í‚Ÿ`
(V∇V* ‚Í‚Ÿ`
(V∇V– ‚Í‚Ÿ`

(V∇V*) ‚Í‚Ÿ`

(V∇V–) ‚Í‚Ÿ`

ε= (V∇V* ‚Í‚Ÿ`

ε= (V∇V– ‚Í‚Ÿ`

ε= (V∇V*) ‚Í‚Ÿ`

ε= (V∇V–) ‚Í‚Ÿ`

C= (V∇V* ‚Í‚Ÿ`

C= (V∇V– ‚Í‚Ÿ`

C= (V∇V*) ‚Í‚Ÿ`

C= (V∇V–) ‚Í‚Ÿ`
*V∇V) ‚Í‚Ÿ`
–V∇V) ‚Í‚Ÿ`

(*V∇V) ‚Í‚Ÿ`

(–V∇V) ‚Í‚Ÿ`

*V∇V) =3 ‚Í‚Ÿ`
–V∇V) =3 ‚Í‚Ÿ`
(*V∇V) =3 ‚Í‚Ÿ`
(–V∇V) =3 ‚Í‚Ÿ`

*V∇V) =‚R ‚Í‚Ÿ`

–V∇V) =‚R ‚Í‚Ÿ`

(*V∇V) =‚R ‚Í‚Ÿ`

(–V∇V) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (V¤V)

(V¤V) ‚Í‚Ÿ`

ε= (V¤V) ‚Í‚Ÿ`

C= (V¤V) ‚Í‚Ÿ`

(V¤V) =3 ‚Í‚Ÿ`

(V¤V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( V¤V )

( V¤V ) ‚Í‚Ÿ`

ε= ( V¤V ) ‚Í‚Ÿ`

C= ( V¤V ) ‚Í‚Ÿ`

( V¤V ) =3 ‚Í‚Ÿ`

( V¤V ) =‚R ‚Í‚Ÿ`
(V¤V ‚Í‚Ÿ`

(V¤V ) ‚Í‚Ÿ`

(V¤V@) ‚Í‚Ÿ`

ε= (V¤V ‚Í‚Ÿ`

ε= (V¤V ) ‚Í‚Ÿ`

ε= (V¤V@) ‚Í‚Ÿ`

C= (V¤V ‚Í‚Ÿ`

C= (V¤V ) ‚Í‚Ÿ`

C= (V¤V@) ‚Í‚Ÿ`
V¤V) ‚Í‚Ÿ`

( V¤V) ‚Í‚Ÿ`

(@V¤V) ‚Í‚Ÿ`

V¤V) =3 ‚Í‚Ÿ`
( V¤V) =3 ‚Í‚Ÿ`
(@V¤V) =3 ‚Í‚Ÿ`

V¤V) =‚R ‚Í‚Ÿ`

( V¤V) =‚R ‚Í‚Ÿ`

(@V¤V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;V¤V;)
‚Í‚Ÿ` (GV¤VG)

(;V¤V;) ‚Í‚Ÿ`

(GV¤VG) ‚Í‚Ÿ`

ε= (;V¤V;) ‚Í‚Ÿ`
ε= (GV¤VG) ‚Í‚Ÿ`

C= (;V¤V;) ‚Í‚Ÿ`

C= (GV¤VG) ‚Í‚Ÿ`

(;V¤V;) =3 ‚Í‚Ÿ`

(GV¤VG) =3 ‚Í‚Ÿ`

(;V¤V;) =‚R ‚Í‚Ÿ`

(GV¤VG) =‚R ‚Í‚Ÿ`
(V¤V; ‚Í‚Ÿ`
(V¤VG ‚Í‚Ÿ`

(V¤V;) ‚Í‚Ÿ`

(V¤V; ) ‚Í‚Ÿ`

(V¤VG) ‚Í‚Ÿ`

ε= (V¤V; ‚Í‚Ÿ`

ε= (V¤VG ‚Í‚Ÿ`

ε= (V¤V;) ‚Í‚Ÿ`

ε= (V¤V; ) ‚Í‚Ÿ`

ε= (V¤VG) ‚Í‚Ÿ`

C= (V¤V; ‚Í‚Ÿ`

C= (V¤VG ‚Í‚Ÿ`

C= (V¤V;) ‚Í‚Ÿ`

C= (V¤V; ) ‚Í‚Ÿ`

C= (V¤VG) ‚Í‚Ÿ`
;V¤V) ‚Í‚Ÿ`
GV¤V) ‚Í‚Ÿ`

(;V¤V) ‚Í‚Ÿ`

( ;V¤V) ‚Í‚Ÿ`

(GV¤V) ‚Í‚Ÿ`

;V¤V) =3 ‚Í‚Ÿ`

GV¤V) =3 ‚Í‚Ÿ`
(;V¤V) =3 ‚Í‚Ÿ`
( ;V¤V) =3 ‚Í‚Ÿ`
(GV¤V) =3 ‚Í‚Ÿ`

;V¤V) =‚R ‚Í‚Ÿ`

GV¤V) =‚R ‚Í‚Ÿ`

(;V¤V) =‚R ‚Í‚Ÿ`

( ;V¤V) =‚R ‚Í‚Ÿ`

(GV¤V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*V¤V*)
‚Í‚Ÿ` (–V¤V–)

(*V¤V*) ‚Í‚Ÿ`

(–V¤V–) ‚Í‚Ÿ`

ε= (*V¤V*) ‚Í‚Ÿ`
ε= (–V¤V–) ‚Í‚Ÿ`

C= (*V¤V*) ‚Í‚Ÿ`

C= (–V¤V–) ‚Í‚Ÿ`

(*V¤V*) =3 ‚Í‚Ÿ`

(–V¤V–) =3 ‚Í‚Ÿ`

(*V¤V*) =‚R ‚Í‚Ÿ`

(–V¤V–) =‚R ‚Í‚Ÿ`
(V¤V* ‚Í‚Ÿ`
(V¤V– ‚Í‚Ÿ`

(V¤V*) ‚Í‚Ÿ`

(V¤V–) ‚Í‚Ÿ`

ε= (V¤V* ‚Í‚Ÿ`

ε= (V¤V– ‚Í‚Ÿ`

ε= (V¤V*) ‚Í‚Ÿ`

ε= (V¤V–) ‚Í‚Ÿ`

C= (V¤V* ‚Í‚Ÿ`

C= (V¤V– ‚Í‚Ÿ`

C= (V¤V*) ‚Í‚Ÿ`

C= (V¤V–) ‚Í‚Ÿ`
*V¤V) ‚Í‚Ÿ`
–V¤V) ‚Í‚Ÿ`

(*V¤V) ‚Í‚Ÿ`

(–V¤V) ‚Í‚Ÿ`

*V¤V) =3 ‚Í‚Ÿ`
–V¤V) =3 ‚Í‚Ÿ`
(*V¤V) =3 ‚Í‚Ÿ`
(–V¤V) =3 ‚Í‚Ÿ`

*V¤V) =‚R ‚Í‚Ÿ`

–V¤V) =‚R ‚Í‚Ÿ`

(*V¤V) =‚R ‚Í‚Ÿ`

(–V¤V) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (V∀V)

(V∀V) ‚Í‚Ÿ`

ε= (V∀V) ‚Í‚Ÿ`

C= (V∀V) ‚Í‚Ÿ`

(V∀V) =3 ‚Í‚Ÿ`

(V∀V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( V∀V )

( V∀V ) ‚Í‚Ÿ`

ε= ( V∀V ) ‚Í‚Ÿ`

C= ( V∀V ) ‚Í‚Ÿ`

( V∀V ) =3 ‚Í‚Ÿ`

( V∀V ) =‚R ‚Í‚Ÿ`
(V∀V ‚Í‚Ÿ`

(V∀V ) ‚Í‚Ÿ`

(V∀V@) ‚Í‚Ÿ`

ε= (V∀V ‚Í‚Ÿ`

ε= (V∀V ) ‚Í‚Ÿ`

ε= (V∀V@) ‚Í‚Ÿ`

C= (V∀V ‚Í‚Ÿ`

C= (V∀V ) ‚Í‚Ÿ`

C= (V∀V@) ‚Í‚Ÿ`
V∀V) ‚Í‚Ÿ`

( V∀V) ‚Í‚Ÿ`

(@V∀V) ‚Í‚Ÿ`

V∀V) =3 ‚Í‚Ÿ`
( V∀V) =3 ‚Í‚Ÿ`
(@V∀V) =3 ‚Í‚Ÿ`

V∀V) =‚R ‚Í‚Ÿ`

( V∀V) =‚R ‚Í‚Ÿ`

(@V∀V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;V∀V;)
‚Í‚Ÿ` (GV∀VG)

(;V∀V;) ‚Í‚Ÿ`

(GV∀VG) ‚Í‚Ÿ`

ε= (;V∀V;) ‚Í‚Ÿ`
ε= (GV∀VG) ‚Í‚Ÿ`

C= (;V∀V;) ‚Í‚Ÿ`

C= (GV∀VG) ‚Í‚Ÿ`

(;V∀V;) =3 ‚Í‚Ÿ`

(GV∀VG) =3 ‚Í‚Ÿ`

(;V∀V;) =‚R ‚Í‚Ÿ`

(GV∀VG) =‚R ‚Í‚Ÿ`
(V∀V; ‚Í‚Ÿ`
(V∀VG ‚Í‚Ÿ`

(V∀V;) ‚Í‚Ÿ`

(V∀V; ) ‚Í‚Ÿ`

(V∀VG) ‚Í‚Ÿ`

ε= (V∀V; ‚Í‚Ÿ`

ε= (V∀VG ‚Í‚Ÿ`

ε= (V∀V;) ‚Í‚Ÿ`

ε= (V∀V; ) ‚Í‚Ÿ`

ε= (V∀VG) ‚Í‚Ÿ`

C= (V∀V; ‚Í‚Ÿ`

C= (V∀VG ‚Í‚Ÿ`

C= (V∀V;) ‚Í‚Ÿ`

C= (V∀V; ) ‚Í‚Ÿ`

C= (V∀VG) ‚Í‚Ÿ`
;V∀V) ‚Í‚Ÿ`
GV∀V) ‚Í‚Ÿ`

(;V∀V) ‚Í‚Ÿ`

( ;V∀V) ‚Í‚Ÿ`

(GV∀V) ‚Í‚Ÿ`

;V∀V) =3 ‚Í‚Ÿ`

GV∀V) =3 ‚Í‚Ÿ`
(;V∀V) =3 ‚Í‚Ÿ`
( ;V∀V) =3 ‚Í‚Ÿ`
(GV∀V) =3 ‚Í‚Ÿ`

;V∀V) =‚R ‚Í‚Ÿ`

GV∀V) =‚R ‚Í‚Ÿ`

(;V∀V) =‚R ‚Í‚Ÿ`

( ;V∀V) =‚R ‚Í‚Ÿ`

(GV∀V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*V∀V*)
‚Í‚Ÿ` (–V∀V–)

(*V∀V*) ‚Í‚Ÿ`

(–V∀V–) ‚Í‚Ÿ`

ε= (*V∀V*) ‚Í‚Ÿ`
ε= (–V∀V–) ‚Í‚Ÿ`

C= (*V∀V*) ‚Í‚Ÿ`

C= (–V∀V–) ‚Í‚Ÿ`

(*V∀V*) =3 ‚Í‚Ÿ`

(–V∀V–) =3 ‚Í‚Ÿ`

(*V∀V*) =‚R ‚Í‚Ÿ`

(–V∀V–) =‚R ‚Í‚Ÿ`
(V∀V* ‚Í‚Ÿ`
(V∀V– ‚Í‚Ÿ`

(V∀V*) ‚Í‚Ÿ`

(V∀V–) ‚Í‚Ÿ`

ε= (V∀V* ‚Í‚Ÿ`

ε= (V∀V– ‚Í‚Ÿ`

ε= (V∀V*) ‚Í‚Ÿ`

ε= (V∀V–) ‚Í‚Ÿ`

C= (V∀V* ‚Í‚Ÿ`

C= (V∀V– ‚Í‚Ÿ`

C= (V∀V*) ‚Í‚Ÿ`

C= (V∀V–) ‚Í‚Ÿ`
*V∀V) ‚Í‚Ÿ`
–V∀V) ‚Í‚Ÿ`

(*V∀V) ‚Í‚Ÿ`

(–V∀V) ‚Í‚Ÿ`

*V∀V) =3 ‚Í‚Ÿ`
–V∀V) =3 ‚Í‚Ÿ`
(*V∀V) =3 ‚Í‚Ÿ`
(–V∀V) =3 ‚Í‚Ÿ`

*V∀V) =‚R ‚Í‚Ÿ`

–V∀V) =‚R ‚Í‚Ÿ`

(*V∀V) =‚R ‚Í‚Ÿ`

(–V∀V) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (VžV)

(VžV) ‚Í‚Ÿ`

ε= (VžV) ‚Í‚Ÿ`

C= (VžV) ‚Í‚Ÿ`

(VžV) =3 ‚Í‚Ÿ`

(VžV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( VžV )

( VžV ) ‚Í‚Ÿ`

ε= ( VžV ) ‚Í‚Ÿ`

C= ( VžV ) ‚Í‚Ÿ`

( VžV ) =3 ‚Í‚Ÿ`

( VžV ) =‚R ‚Í‚Ÿ`
(VžV ‚Í‚Ÿ`

(VžV ) ‚Í‚Ÿ`

(VžV@) ‚Í‚Ÿ`

ε= (VžV ‚Í‚Ÿ`

ε= (VžV ) ‚Í‚Ÿ`

ε= (VžV@) ‚Í‚Ÿ`

C= (VžV ‚Í‚Ÿ`

C= (VžV ) ‚Í‚Ÿ`

C= (VžV@) ‚Í‚Ÿ`
VžV) ‚Í‚Ÿ`

( VžV) ‚Í‚Ÿ`

(@VžV) ‚Í‚Ÿ`

VžV) =3 ‚Í‚Ÿ`
( VžV) =3 ‚Í‚Ÿ`
(@VžV) =3 ‚Í‚Ÿ`

VžV) =‚R ‚Í‚Ÿ`

( VžV) =‚R ‚Í‚Ÿ`

(@VžV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;VžV;)
‚Í‚Ÿ` (GVžVG)

(;VžV;) ‚Í‚Ÿ`

(GVžVG) ‚Í‚Ÿ`

ε= (;VžV;) ‚Í‚Ÿ`
ε= (GVžVG) ‚Í‚Ÿ`

C= (;VžV;) ‚Í‚Ÿ`

C= (GVžVG) ‚Í‚Ÿ`

(;VžV;) =3 ‚Í‚Ÿ`

(GVžVG) =3 ‚Í‚Ÿ`

(;VžV;) =‚R ‚Í‚Ÿ`

(GVžVG) =‚R ‚Í‚Ÿ`
(VžV; ‚Í‚Ÿ`
(VžVG ‚Í‚Ÿ`

(VžV;) ‚Í‚Ÿ`

(VžV; ) ‚Í‚Ÿ`

(VžVG) ‚Í‚Ÿ`

ε= (VžV; ‚Í‚Ÿ`

ε= (VžVG ‚Í‚Ÿ`

ε= (VžV;) ‚Í‚Ÿ`

ε= (VžV; ) ‚Í‚Ÿ`

ε= (VžVG) ‚Í‚Ÿ`

C= (VžV; ‚Í‚Ÿ`

C= (VžVG ‚Í‚Ÿ`

C= (VžV;) ‚Í‚Ÿ`

C= (VžV; ) ‚Í‚Ÿ`

C= (VžVG) ‚Í‚Ÿ`
;VžV) ‚Í‚Ÿ`
GVžV) ‚Í‚Ÿ`

(;VžV) ‚Í‚Ÿ`

( ;VžV) ‚Í‚Ÿ`

(GVžV) ‚Í‚Ÿ`

;VžV) =3 ‚Í‚Ÿ`

GVžV) =3 ‚Í‚Ÿ`
(;VžV) =3 ‚Í‚Ÿ`
( ;VžV) =3 ‚Í‚Ÿ`
(GVžV) =3 ‚Í‚Ÿ`

;VžV) =‚R ‚Í‚Ÿ`

GVžV) =‚R ‚Í‚Ÿ`

(;VžV) =‚R ‚Í‚Ÿ`

( ;VžV) =‚R ‚Í‚Ÿ`

(GVžV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*VžV*)
‚Í‚Ÿ` (–VžV–)

(*VžV*) ‚Í‚Ÿ`

(–VžV–) ‚Í‚Ÿ`

ε= (*VžV*) ‚Í‚Ÿ`
ε= (–VžV–) ‚Í‚Ÿ`

C= (*VžV*) ‚Í‚Ÿ`

C= (–VžV–) ‚Í‚Ÿ`

(*VžV*) =3 ‚Í‚Ÿ`

(–VžV–) =3 ‚Í‚Ÿ`

(*VžV*) =‚R ‚Í‚Ÿ`

(–VžV–) =‚R ‚Í‚Ÿ`
(VžV* ‚Í‚Ÿ`
(VžV– ‚Í‚Ÿ`

(VžV*) ‚Í‚Ÿ`

(VžV–) ‚Í‚Ÿ`

ε= (VžV* ‚Í‚Ÿ`

ε= (VžV– ‚Í‚Ÿ`

ε= (VžV*) ‚Í‚Ÿ`

ε= (VžV–) ‚Í‚Ÿ`

C= (VžV* ‚Í‚Ÿ`

C= (VžV– ‚Í‚Ÿ`

C= (VžV*) ‚Í‚Ÿ`

C= (VžV–) ‚Í‚Ÿ`
*VžV) ‚Í‚Ÿ`
–VžV) ‚Í‚Ÿ`

(*VžV) ‚Í‚Ÿ`

(–VžV) ‚Í‚Ÿ`

*VžV) =3 ‚Í‚Ÿ`
–VžV) =3 ‚Í‚Ÿ`
(*VžV) =3 ‚Í‚Ÿ`
(–VžV) =3 ‚Í‚Ÿ`

*VžV) =‚R ‚Í‚Ÿ`

–VžV) =‚R ‚Í‚Ÿ`

(*VžV) =‚R ‚Í‚Ÿ`

(–VžV) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (VƒV)

(VƒV) ‚Í‚Ÿ`

ε= (VƒV) ‚Í‚Ÿ`

C= (VƒV) ‚Í‚Ÿ`

(VƒV) =3 ‚Í‚Ÿ`

(VƒV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( VƒV )

( VƒV ) ‚Í‚Ÿ`

ε= ( VƒV ) ‚Í‚Ÿ`

C= ( VƒV ) ‚Í‚Ÿ`

( VƒV ) =3 ‚Í‚Ÿ`

( VƒV ) =‚R ‚Í‚Ÿ`
(VƒV ‚Í‚Ÿ`

(VƒV ) ‚Í‚Ÿ`

(VƒV@) ‚Í‚Ÿ`

ε= (VƒV ‚Í‚Ÿ`

ε= (VƒV ) ‚Í‚Ÿ`

ε= (VƒV@) ‚Í‚Ÿ`

C= (VƒV ‚Í‚Ÿ`

C= (VƒV ) ‚Í‚Ÿ`

C= (VƒV@) ‚Í‚Ÿ`
VƒV) ‚Í‚Ÿ`

( VƒV) ‚Í‚Ÿ`

(@VƒV) ‚Í‚Ÿ`

VƒV) =3 ‚Í‚Ÿ`
( VƒV) =3 ‚Í‚Ÿ`
(@VƒV) =3 ‚Í‚Ÿ`

VƒV) =‚R ‚Í‚Ÿ`

( VƒV) =‚R ‚Í‚Ÿ`

(@VƒV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;VƒV;)
‚Í‚Ÿ` (GVƒVG)

(;VƒV;) ‚Í‚Ÿ`

(GVƒVG) ‚Í‚Ÿ`

ε= (;VƒV;) ‚Í‚Ÿ`
ε= (GVƒVG) ‚Í‚Ÿ`

C= (;VƒV;) ‚Í‚Ÿ`

C= (GVƒVG) ‚Í‚Ÿ`

(;VƒV;) =3 ‚Í‚Ÿ`

(GVƒVG) =3 ‚Í‚Ÿ`

(;VƒV;) =‚R ‚Í‚Ÿ`

(GVƒVG) =‚R ‚Í‚Ÿ`
(VƒV; ‚Í‚Ÿ`
(VƒVG ‚Í‚Ÿ`

(VƒV;) ‚Í‚Ÿ`

(VƒV; ) ‚Í‚Ÿ`

(VƒVG) ‚Í‚Ÿ`

ε= (VƒV; ‚Í‚Ÿ`

ε= (VƒVG ‚Í‚Ÿ`

ε= (VƒV;) ‚Í‚Ÿ`

ε= (VƒV; ) ‚Í‚Ÿ`

ε= (VƒVG) ‚Í‚Ÿ`

C= (VƒV; ‚Í‚Ÿ`

C= (VƒVG ‚Í‚Ÿ`

C= (VƒV;) ‚Í‚Ÿ`

C= (VƒV; ) ‚Í‚Ÿ`

C= (VƒVG) ‚Í‚Ÿ`
;VƒV) ‚Í‚Ÿ`
GVƒV) ‚Í‚Ÿ`

(;VƒV) ‚Í‚Ÿ`

( ;VƒV) ‚Í‚Ÿ`

(GVƒV) ‚Í‚Ÿ`

;VƒV) =3 ‚Í‚Ÿ`

GVƒV) =3 ‚Í‚Ÿ`
(;VƒV) =3 ‚Í‚Ÿ`
( ;VƒV) =3 ‚Í‚Ÿ`
(GVƒV) =3 ‚Í‚Ÿ`

;VƒV) =‚R ‚Í‚Ÿ`

GVƒV) =‚R ‚Í‚Ÿ`

(;VƒV) =‚R ‚Í‚Ÿ`

( ;VƒV) =‚R ‚Í‚Ÿ`

(GVƒV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*VƒV*)
‚Í‚Ÿ` (–VƒV–)

(*VƒV*) ‚Í‚Ÿ`

(–VƒV–) ‚Í‚Ÿ`

ε= (*VƒV*) ‚Í‚Ÿ`
ε= (–VƒV–) ‚Í‚Ÿ`

C= (*VƒV*) ‚Í‚Ÿ`

C= (–VƒV–) ‚Í‚Ÿ`

(*VƒV*) =3 ‚Í‚Ÿ`

(–VƒV–) =3 ‚Í‚Ÿ`

(*VƒV*) =‚R ‚Í‚Ÿ`

(–VƒV–) =‚R ‚Í‚Ÿ`
(VƒV* ‚Í‚Ÿ`
(VƒV– ‚Í‚Ÿ`

(VƒV*) ‚Í‚Ÿ`

(VƒV–) ‚Í‚Ÿ`

ε= (VƒV* ‚Í‚Ÿ`

ε= (VƒV– ‚Í‚Ÿ`

ε= (VƒV*) ‚Í‚Ÿ`

ε= (VƒV–) ‚Í‚Ÿ`

C= (VƒV* ‚Í‚Ÿ`

C= (VƒV– ‚Í‚Ÿ`

C= (VƒV*) ‚Í‚Ÿ`

C= (VƒV–) ‚Í‚Ÿ`
*VƒV) ‚Í‚Ÿ`
–VƒV) ‚Í‚Ÿ`

(*VƒV) ‚Í‚Ÿ`

(–VƒV) ‚Í‚Ÿ`

*VƒV) =3 ‚Í‚Ÿ`
–VƒV) =3 ‚Í‚Ÿ`
(*VƒV) =3 ‚Í‚Ÿ`
(–VƒV) =3 ‚Í‚Ÿ`

*VƒV) =‚R ‚Í‚Ÿ`

–VƒV) =‚R ‚Í‚Ÿ`

(*VƒV) =‚R ‚Í‚Ÿ`

(–VƒV) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (VŒûV)

(VŒûV) ‚Í‚Ÿ`

ε= (VŒûV) ‚Í‚Ÿ`

C= (VŒûV) ‚Í‚Ÿ`

(VŒûV) =3 ‚Í‚Ÿ`

(VŒûV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( VŒûV )

( VŒûV ) ‚Í‚Ÿ`

ε= ( VŒûV ) ‚Í‚Ÿ`

C= ( VŒûV ) ‚Í‚Ÿ`

( VŒûV ) =3 ‚Í‚Ÿ`

( VŒûV ) =‚R ‚Í‚Ÿ`
(VŒûV ‚Í‚Ÿ`

(VŒûV ) ‚Í‚Ÿ`

(VŒûV@) ‚Í‚Ÿ`

ε= (VŒûV ‚Í‚Ÿ`

ε= (VŒûV ) ‚Í‚Ÿ`

ε= (VŒûV@) ‚Í‚Ÿ`

C= (VŒûV ‚Í‚Ÿ`

C= (VŒûV ) ‚Í‚Ÿ`

C= (VŒûV@) ‚Í‚Ÿ`
VŒûV) ‚Í‚Ÿ`

( VŒûV) ‚Í‚Ÿ`

(@VŒûV) ‚Í‚Ÿ`

VŒûV) =3 ‚Í‚Ÿ`
( VŒûV) =3 ‚Í‚Ÿ`
(@VŒûV) =3 ‚Í‚Ÿ`

VŒûV) =‚R ‚Í‚Ÿ`

( VŒûV) =‚R ‚Í‚Ÿ`

(@VŒûV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;VŒûV;)
‚Í‚Ÿ` (GVŒûVG)

(;VŒûV;) ‚Í‚Ÿ`

(GVŒûVG) ‚Í‚Ÿ`

ε= (;VŒûV;) ‚Í‚Ÿ`
ε= (GVŒûVG) ‚Í‚Ÿ`

C= (;VŒûV;) ‚Í‚Ÿ`

C= (GVŒûVG) ‚Í‚Ÿ`

(;VŒûV;) =3 ‚Í‚Ÿ`

(GVŒûVG) =3 ‚Í‚Ÿ`

(;VŒûV;) =‚R ‚Í‚Ÿ`

(GVŒûVG) =‚R ‚Í‚Ÿ`
(VŒûV; ‚Í‚Ÿ`
(VŒûVG ‚Í‚Ÿ`

(VŒûV;) ‚Í‚Ÿ`

(VŒûV; ) ‚Í‚Ÿ`

(VŒûVG) ‚Í‚Ÿ`

ε= (VŒûV; ‚Í‚Ÿ`

ε= (VŒûVG ‚Í‚Ÿ`

ε= (VŒûV;) ‚Í‚Ÿ`

ε= (VŒûV; ) ‚Í‚Ÿ`

ε= (VŒûVG) ‚Í‚Ÿ`

C= (VŒûV; ‚Í‚Ÿ`

C= (VŒûVG ‚Í‚Ÿ`

C= (VŒûV;) ‚Í‚Ÿ`

C= (VŒûV; ) ‚Í‚Ÿ`

C= (VŒûVG) ‚Í‚Ÿ`
;VŒûV) ‚Í‚Ÿ`
GVŒûV) ‚Í‚Ÿ`

(;VŒûV) ‚Í‚Ÿ`

( ;VŒûV) ‚Í‚Ÿ`

(GVŒûV) ‚Í‚Ÿ`

;VŒûV) =3 ‚Í‚Ÿ`

GVŒûV) =3 ‚Í‚Ÿ`
(;VŒûV) =3 ‚Í‚Ÿ`
( ;VŒûV) =3 ‚Í‚Ÿ`
(GVŒûV) =3 ‚Í‚Ÿ`

;VŒûV) =‚R ‚Í‚Ÿ`

GVŒûV) =‚R ‚Í‚Ÿ`

(;VŒûV) =‚R ‚Í‚Ÿ`

( ;VŒûV) =‚R ‚Í‚Ÿ`

(GVŒûV) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*VŒûV*)
‚Í‚Ÿ` (–VŒûV–)

(*VŒûV*) ‚Í‚Ÿ`

(–VŒûV–) ‚Í‚Ÿ`

ε= (*VŒûV*) ‚Í‚Ÿ`
ε= (–VŒûV–) ‚Í‚Ÿ`

C= (*VŒûV*) ‚Í‚Ÿ`

C= (–VŒûV–) ‚Í‚Ÿ`

(*VŒûV*) =3 ‚Í‚Ÿ`

(–VŒûV–) =3 ‚Í‚Ÿ`

(*VŒûV*) =‚R ‚Í‚Ÿ`

(–VŒûV–) =‚R ‚Í‚Ÿ`
(VŒûV* ‚Í‚Ÿ`
(VŒûV– ‚Í‚Ÿ`

(VŒûV*) ‚Í‚Ÿ`

(VŒûV–) ‚Í‚Ÿ`

ε= (VŒûV* ‚Í‚Ÿ`

ε= (VŒûV– ‚Í‚Ÿ`

ε= (VŒûV*) ‚Í‚Ÿ`

ε= (VŒûV–) ‚Í‚Ÿ`

C= (VŒûV* ‚Í‚Ÿ`

C= (VŒûV– ‚Í‚Ÿ`

C= (VŒûV*) ‚Í‚Ÿ`

C= (VŒûV–) ‚Í‚Ÿ`
*VŒûV) ‚Í‚Ÿ`
–VŒûV) ‚Í‚Ÿ`

(*VŒûV) ‚Í‚Ÿ`

(–VŒûV) ‚Í‚Ÿ`

*VŒûV) =3 ‚Í‚Ÿ`
–VŒûV) =3 ‚Í‚Ÿ`
(*VŒûV) =3 ‚Í‚Ÿ`
(–VŒûV) =3 ‚Í‚Ÿ`

*VŒûV) =‚R ‚Í‚Ÿ`

–VŒûV) =‚R ‚Í‚Ÿ`

(*VŒûV) =‚R ‚Í‚Ÿ`

(–VŒûV) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (V¢V)

(V¢V) ‚Í‚Ÿ`

ε= (V¢V) ‚Í‚Ÿ`

C= (V¢V) ‚Í‚Ÿ`

(V¢V) =3 ‚Í‚Ÿ`

(V¢V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( V¢V )

( V¢V ) ‚Í‚Ÿ`

ε= ( V¢V ) ‚Í‚Ÿ`

C= ( V¢V ) ‚Í‚Ÿ`

( V¢V ) =3 ‚Í‚Ÿ`

( V¢V ) =‚R ‚Í‚Ÿ`
(V¢V ‚Í‚Ÿ`

(V¢V ) ‚Í‚Ÿ`

(V¢V@) ‚Í‚Ÿ`

ε= (V¢V ‚Í‚Ÿ`

ε= (V¢V ) ‚Í‚Ÿ`

ε= (V¢V@) ‚Í‚Ÿ`

C= (V¢V ‚Í‚Ÿ`

C= (V¢V ) ‚Í‚Ÿ`

C= (V¢V@) ‚Í‚Ÿ`
V¢V) ‚Í‚Ÿ`

( V¢V) ‚Í‚Ÿ`

(@V¢V) ‚Í‚Ÿ`

V¢V) =3 ‚Í‚Ÿ`
( V¢V) =3 ‚Í‚Ÿ`
(@V¢V) =3 ‚Í‚Ÿ`

V¢V) =‚R ‚Í‚Ÿ`

( V¢V) =‚R ‚Í‚Ÿ`

(@V¢V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;V¢V;)
‚Í‚Ÿ` (GV¢VG)

(;V¢V;) ‚Í‚Ÿ`

(GV¢VG) ‚Í‚Ÿ`

ε= (;V¢V;) ‚Í‚Ÿ`
ε= (GV¢VG) ‚Í‚Ÿ`

C= (;V¢V;) ‚Í‚Ÿ`

C= (GV¢VG) ‚Í‚Ÿ`

(;V¢V;) =3 ‚Í‚Ÿ`

(GV¢VG) =3 ‚Í‚Ÿ`

(;V¢V;) =‚R ‚Í‚Ÿ`

(GV¢VG) =‚R ‚Í‚Ÿ`
(V¢V; ‚Í‚Ÿ`
(V¢VG ‚Í‚Ÿ`

(V¢V;) ‚Í‚Ÿ`

(V¢V; ) ‚Í‚Ÿ`

(V¢VG) ‚Í‚Ÿ`

ε= (V¢V; ‚Í‚Ÿ`

ε= (V¢VG ‚Í‚Ÿ`

ε= (V¢V;) ‚Í‚Ÿ`

ε= (V¢V; ) ‚Í‚Ÿ`

ε= (V¢VG) ‚Í‚Ÿ`

C= (V¢V; ‚Í‚Ÿ`

C= (V¢VG ‚Í‚Ÿ`

C= (V¢V;) ‚Í‚Ÿ`

C= (V¢V; ) ‚Í‚Ÿ`

C= (V¢VG) ‚Í‚Ÿ`
;V¢V) ‚Í‚Ÿ`
GV¢V) ‚Í‚Ÿ`

(;V¢V) ‚Í‚Ÿ`

( ;V¢V) ‚Í‚Ÿ`

(GV¢V) ‚Í‚Ÿ`

;V¢V) =3 ‚Í‚Ÿ`

GV¢V) =3 ‚Í‚Ÿ`
(;V¢V) =3 ‚Í‚Ÿ`
( ;V¢V) =3 ‚Í‚Ÿ`
(GV¢V) =3 ‚Í‚Ÿ`

;V¢V) =‚R ‚Í‚Ÿ`

GV¢V) =‚R ‚Í‚Ÿ`

(;V¢V) =‚R ‚Í‚Ÿ`

( ;V¢V) =‚R ‚Í‚Ÿ`

(GV¢V) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*V¢V*)
‚Í‚Ÿ` (–V¢V–)

(*V¢V*) ‚Í‚Ÿ`

(–V¢V–) ‚Í‚Ÿ`

ε= (*V¢V*) ‚Í‚Ÿ`
ε= (–V¢V–) ‚Í‚Ÿ`

C= (*V¢V*) ‚Í‚Ÿ`

C= (–V¢V–) ‚Í‚Ÿ`

(*V¢V*) =3 ‚Í‚Ÿ`

(–V¢V–) =3 ‚Í‚Ÿ`

(*V¢V*) =‚R ‚Í‚Ÿ`

(–V¢V–) =‚R ‚Í‚Ÿ`
(V¢V* ‚Í‚Ÿ`
(V¢V– ‚Í‚Ÿ`

(V¢V*) ‚Í‚Ÿ`

(V¢V–) ‚Í‚Ÿ`

ε= (V¢V* ‚Í‚Ÿ`

ε= (V¢V– ‚Í‚Ÿ`

ε= (V¢V*) ‚Í‚Ÿ`

ε= (V¢V–) ‚Í‚Ÿ`

C= (V¢V* ‚Í‚Ÿ`

C= (V¢V– ‚Í‚Ÿ`

C= (V¢V*) ‚Í‚Ÿ`

C= (V¢V–) ‚Í‚Ÿ`
*V¢V) ‚Í‚Ÿ`
–V¢V) ‚Í‚Ÿ`

(*V¢V) ‚Í‚Ÿ`

(–V¢V) ‚Í‚Ÿ`

*V¢V) =3 ‚Í‚Ÿ`
–V¢V) =3 ‚Í‚Ÿ`
(*V¢V) =3 ‚Í‚Ÿ`
(–V¢V) =3 ‚Í‚Ÿ`

*V¢V) =‚R ‚Í‚Ÿ`

–V¢V) =‚R ‚Í‚Ÿ`

(*V¢V) =‚R ‚Í‚Ÿ`

(–V¢V) =‚R ‚Í‚Ÿ`
–ß‚éƒ{ƒ^ƒ“