→ Šç•¶ŽšƒiƒrEƒgƒbƒvƒy[ƒW |
‚Í‚Ÿ` iãü–Ú) |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (PoP) (PoP) ‚Í‚Ÿ` ε= (PoP) ‚Í‚Ÿ` C= (PoP) ‚Í‚Ÿ` (PoP) =3 ‚Í‚Ÿ` (PoP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( PoP ) ( PoP ) ‚Í‚Ÿ` ε= ( PoP ) ‚Í‚Ÿ` C= ( PoP ) ‚Í‚Ÿ` ( PoP ) =3 ‚Í‚Ÿ` ( PoP ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PoP ‚Í‚Ÿ` (PoP ) ‚Í‚Ÿ` (PoP@) ‚Í‚Ÿ` ε= (PoP ‚Í‚Ÿ` ε= (PoP ) ‚Í‚Ÿ` ε= (PoP@) ‚Í‚Ÿ` C= (PoP ‚Í‚Ÿ` C= (PoP ) ‚Í‚Ÿ` C= (PoP@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
PoP) ‚Í‚Ÿ` ( PoP) ‚Í‚Ÿ` (@PoP) ‚Í‚Ÿ` PoP) =3 ‚Í‚Ÿ` ( PoP) =3 ‚Í‚Ÿ` (@PoP) =3 ‚Í‚Ÿ` PoP) =‚R ‚Í‚Ÿ` ( PoP) =‚R ‚Í‚Ÿ` (@PoP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;PoP;)
‚Í‚Ÿ` (GPoPG) (;PoP;) ‚Í‚Ÿ` (GPoPG) ‚Í‚Ÿ` ε= (;PoP;) ‚Í‚Ÿ` ε= (GPoPG) ‚Í‚Ÿ` C= (;PoP;) ‚Í‚Ÿ` C= (GPoPG) ‚Í‚Ÿ` (;PoP;) =3 ‚Í‚Ÿ` (GPoPG) =3 ‚Í‚Ÿ` (;PoP;) =‚R ‚Í‚Ÿ` (GPoPG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PoP; ‚Í‚Ÿ`
(PoPG ‚Í‚Ÿ` (PoP;) ‚Í‚Ÿ` (PoP; ) ‚Í‚Ÿ` (PoPG) ‚Í‚Ÿ` ε= (PoP; ‚Í‚Ÿ` ε= (PoPG ‚Í‚Ÿ` ε= (PoP;) ‚Í‚Ÿ` ε= (PoP; ) ‚Í‚Ÿ` ε= (PoPG) ‚Í‚Ÿ` C= (PoP; ‚Í‚Ÿ` C= (PoPG ‚Í‚Ÿ` C= (PoP;) ‚Í‚Ÿ` C= (PoP; ) ‚Í‚Ÿ` C= (PoPG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;PoP) ‚Í‚Ÿ`
GPoP) ‚Í‚Ÿ` (;PoP) ‚Í‚Ÿ` ( ;PoP) ‚Í‚Ÿ` (GPoP) ‚Í‚Ÿ` ;PoP) =3 ‚Í‚Ÿ` GPoP) =3 ‚Í‚Ÿ` (;PoP) =3 ‚Í‚Ÿ` ( ;PoP) =3 ‚Í‚Ÿ` (GPoP) =3 ‚Í‚Ÿ` ;PoP) =‚R ‚Í‚Ÿ` GPoP) =‚R ‚Í‚Ÿ` (;PoP) =‚R ‚Í‚Ÿ` ( ;PoP) =‚R ‚Í‚Ÿ` (GPoP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*PoP*)
‚Í‚Ÿ` (–PoP–) (*PoP*) ‚Í‚Ÿ` (–PoP–) ‚Í‚Ÿ` ε= (*PoP*) ‚Í‚Ÿ` ε= (–PoP–) ‚Í‚Ÿ` C= (*PoP*) ‚Í‚Ÿ` C= (–PoP–) ‚Í‚Ÿ` (*PoP*) =3 ‚Í‚Ÿ` (–PoP–) =3 ‚Í‚Ÿ` (*PoP*) =‚R ‚Í‚Ÿ` (–PoP–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PoP* ‚Í‚Ÿ`
(PoP– ‚Í‚Ÿ` (PoP*) ‚Í‚Ÿ` (PoP–) ‚Í‚Ÿ` ε= (PoP* ‚Í‚Ÿ` ε= (PoP– ‚Í‚Ÿ` ε= (PoP*) ‚Í‚Ÿ` ε= (PoP–) ‚Í‚Ÿ` C= (PoP* ‚Í‚Ÿ` C= (PoP– ‚Í‚Ÿ` C= (PoP*) ‚Í‚Ÿ` C= (PoP–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*PoP) ‚Í‚Ÿ`
–PoP) ‚Í‚Ÿ` (*PoP) ‚Í‚Ÿ` (–PoP) ‚Í‚Ÿ` *PoP) =3 ‚Í‚Ÿ` –PoP) =3 ‚Í‚Ÿ` (*PoP) =3 ‚Í‚Ÿ` (–PoP) =3 ‚Í‚Ÿ` *PoP) =‚R ‚Í‚Ÿ` –PoP) =‚R ‚Í‚Ÿ` (*PoP) =‚R ‚Í‚Ÿ` (–PoP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PoP— ‚Í‚Ÿ` (PoP—) ‚Í‚Ÿ` ε= (PoP— ‚Í‚Ÿ` ε= (PoP—) ‚Í‚Ÿ` C= (PoP— ‚Í‚Ÿ` C= (PoP—) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
—PoP) ‚Í‚Ÿ` (—PoP) ‚Í‚Ÿ` —PoP) =3 ‚Í‚Ÿ` (—PoP) =3 ‚Í‚Ÿ` —PoP) =‚R ‚Í‚Ÿ` (—PoP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VPoPV) (VPoPV) ‚Í‚Ÿ` ε= (VPoPV) ‚Í‚Ÿ` C= (VPoPV) ‚Í‚Ÿ` (VPoPV) =3 ‚Í‚Ÿ` (VPoPV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PoPV ‚Í‚Ÿ` (PoPV) ‚Í‚Ÿ` ε= (PoPV ‚Í‚Ÿ` ε= (PoPV) ‚Í‚Ÿ` C= (PoPV ‚Í‚Ÿ` C= (PoPV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VPoP) ‚Í‚Ÿ` (VPoP) ‚Í‚Ÿ` VPoP) =3 ‚Í‚Ÿ` (VPoP) =3 ‚Í‚Ÿ` VPoP) =‚R ‚Í‚Ÿ` (VPoP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (P‚P) (P‚P) ‚Í‚Ÿ` ε= (P‚P) ‚Í‚Ÿ` C= (P‚P) ‚Í‚Ÿ` (P‚P) =3 ‚Í‚Ÿ` (P‚P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( P‚P ) ( P‚P ) ‚Í‚Ÿ` ε= ( P‚P ) ‚Í‚Ÿ` C= ( P‚P ) ‚Í‚Ÿ` ( P‚P ) =3 ‚Í‚Ÿ` ( P‚P ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚P ‚Í‚Ÿ` (P‚P ) ‚Í‚Ÿ` (P‚P@) ‚Í‚Ÿ` ε= (P‚P ‚Í‚Ÿ` ε= (P‚P ) ‚Í‚Ÿ` ε= (P‚P@) ‚Í‚Ÿ` C= (P‚P ‚Í‚Ÿ` C= (P‚P ) ‚Í‚Ÿ` C= (P‚P@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
P‚P) ‚Í‚Ÿ` ( P‚P) ‚Í‚Ÿ` (@P‚P) ‚Í‚Ÿ` P‚P) =3 ‚Í‚Ÿ` ( P‚P) =3 ‚Í‚Ÿ` (@P‚P) =3 ‚Í‚Ÿ` P‚P) =‚R ‚Í‚Ÿ` ( P‚P) =‚R ‚Í‚Ÿ` (@P‚P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;P‚P;)
‚Í‚Ÿ` (GP‚PG) (;P‚P;) ‚Í‚Ÿ` (GP‚PG) ‚Í‚Ÿ` ε= (;P‚P;) ‚Í‚Ÿ` ε= (GP‚PG) ‚Í‚Ÿ` C= (;P‚P;) ‚Í‚Ÿ` C= (GP‚PG) ‚Í‚Ÿ` (;P‚P;) =3 ‚Í‚Ÿ` (GP‚PG) =3 ‚Í‚Ÿ` (;P‚P;) =‚R ‚Í‚Ÿ` (GP‚PG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚P; ‚Í‚Ÿ`
(P‚PG ‚Í‚Ÿ` (P‚P;) ‚Í‚Ÿ` (P‚P; ) ‚Í‚Ÿ` (P‚PG) ‚Í‚Ÿ` ε= (P‚P; ‚Í‚Ÿ` ε= (P‚PG ‚Í‚Ÿ` ε= (P‚P;) ‚Í‚Ÿ` ε= (P‚P; ) ‚Í‚Ÿ` ε= (P‚PG) ‚Í‚Ÿ` C= (P‚P; ‚Í‚Ÿ` C= (P‚PG ‚Í‚Ÿ` C= (P‚P;) ‚Í‚Ÿ` C= (P‚P; ) ‚Í‚Ÿ` C= (P‚PG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;P‚P) ‚Í‚Ÿ`
GP‚P) ‚Í‚Ÿ` (;P‚P) ‚Í‚Ÿ` ( ;P‚P) ‚Í‚Ÿ` (GP‚P) ‚Í‚Ÿ` ;P‚P) =3 ‚Í‚Ÿ` GP‚P) =3 ‚Í‚Ÿ` (;P‚P) =3 ‚Í‚Ÿ` ( ;P‚P) =3 ‚Í‚Ÿ` (GP‚P) =3 ‚Í‚Ÿ` ;P‚P) =‚R ‚Í‚Ÿ` GP‚P) =‚R ‚Í‚Ÿ` (;P‚P) =‚R ‚Í‚Ÿ` ( ;P‚P) =‚R ‚Í‚Ÿ` (GP‚P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*P‚P*)
‚Í‚Ÿ` (–P‚P–) (*P‚P*) ‚Í‚Ÿ` (–P‚P–) ‚Í‚Ÿ` ε= (*P‚P*) ‚Í‚Ÿ` ε= (–P‚P–) ‚Í‚Ÿ` C= (*P‚P*) ‚Í‚Ÿ` C= (–P‚P–) ‚Í‚Ÿ` (*P‚P*) =3 ‚Í‚Ÿ` (–P‚P–) =3 ‚Í‚Ÿ` (*P‚P*) =‚R ‚Í‚Ÿ` (–P‚P–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚P* ‚Í‚Ÿ`
(P‚P– ‚Í‚Ÿ` (P‚P*) ‚Í‚Ÿ` (P‚P–) ‚Í‚Ÿ` ε= (P‚P* ‚Í‚Ÿ` ε= (P‚P– ‚Í‚Ÿ` ε= (P‚P*) ‚Í‚Ÿ` ε= (P‚P–) ‚Í‚Ÿ` C= (P‚P* ‚Í‚Ÿ` C= (P‚P– ‚Í‚Ÿ` C= (P‚P*) ‚Í‚Ÿ` C= (P‚P–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*P‚P) ‚Í‚Ÿ`
–P‚P) ‚Í‚Ÿ` (*P‚P) ‚Í‚Ÿ` (–P‚P) ‚Í‚Ÿ` *P‚P) =3 ‚Í‚Ÿ` –P‚P) =3 ‚Í‚Ÿ` (*P‚P) =3 ‚Í‚Ÿ` (–P‚P) =3 ‚Í‚Ÿ` *P‚P) =‚R ‚Í‚Ÿ` –P‚P) =‚R ‚Í‚Ÿ` (*P‚P) =‚R ‚Í‚Ÿ` (–P‚P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VP‚PV) (VP‚PV) ‚Í‚Ÿ` ε= (VP‚PV) ‚Í‚Ÿ` C= (VP‚PV) ‚Í‚Ÿ` (VP‚PV) =3 ‚Í‚Ÿ` (VP‚PV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚PV ‚Í‚Ÿ` (P‚PV) ‚Í‚Ÿ` ε= (P‚PV ‚Í‚Ÿ` ε= (P‚PV) ‚Í‚Ÿ` C= (P‚PV ‚Í‚Ÿ` C= (P‚PV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VP‚P) ‚Í‚Ÿ` (VP‚P) ‚Í‚Ÿ` VP‚P) =3 ‚Í‚Ÿ` (VP‚P) =3 ‚Í‚Ÿ` VP‚P) =‚R ‚Í‚Ÿ` (VP‚P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (P0P) (P0P) ‚Í‚Ÿ` ε= (P0P) ‚Í‚Ÿ` C= (P0P) ‚Í‚Ÿ` (P0P) =3 ‚Í‚Ÿ` (P0P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( P0P ) ( P0P ) ‚Í‚Ÿ` ε= ( P0P ) ‚Í‚Ÿ` C= ( P0P ) ‚Í‚Ÿ` ( P0P ) =3 ‚Í‚Ÿ` ( P0P ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P0P ‚Í‚Ÿ` (P0P ) ‚Í‚Ÿ` (P0P@) ‚Í‚Ÿ` ε= (P0P ‚Í‚Ÿ` ε= (P0P ) ‚Í‚Ÿ` ε= (P0P@) ‚Í‚Ÿ` C= (P0P ‚Í‚Ÿ` C= (P0P ) ‚Í‚Ÿ` C= (P0P@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
P0P) ‚Í‚Ÿ` ( P0P) ‚Í‚Ÿ` (@P0P) ‚Í‚Ÿ` P0P) =3 ‚Í‚Ÿ` ( P0P) =3 ‚Í‚Ÿ` (@P0P) =3 ‚Í‚Ÿ` P0P) =‚R ‚Í‚Ÿ` ( P0P) =‚R ‚Í‚Ÿ` (@P0P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;P0P;)
‚Í‚Ÿ` (GP0PG) (;P0P;) ‚Í‚Ÿ` (GP0PG) ‚Í‚Ÿ` ε= (;P0P;) ‚Í‚Ÿ` ε= (GP0PG) ‚Í‚Ÿ` C= (;P0P;) ‚Í‚Ÿ` C= (GP0PG) ‚Í‚Ÿ` (;P0P;) =3 ‚Í‚Ÿ` (GP0PG) =3 ‚Í‚Ÿ` (;P0P;) =‚R ‚Í‚Ÿ` (GP0PG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P0P; ‚Í‚Ÿ`
(P0PG ‚Í‚Ÿ` (P0P;) ‚Í‚Ÿ` (P0P; ) ‚Í‚Ÿ` (P0PG) ‚Í‚Ÿ` ε= (P0P; ‚Í‚Ÿ` ε= (P0PG ‚Í‚Ÿ` ε= (P0P;) ‚Í‚Ÿ` ε= (P0P; ) ‚Í‚Ÿ` ε= (P0PG) ‚Í‚Ÿ` C= (P0P; ‚Í‚Ÿ` C= (P0PG ‚Í‚Ÿ` C= (P0P;) ‚Í‚Ÿ` C= (P0P; ) ‚Í‚Ÿ` C= (P0PG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;P0P) ‚Í‚Ÿ`
GP0P) ‚Í‚Ÿ` (;P0P) ‚Í‚Ÿ` ( ;P0P) ‚Í‚Ÿ` (GP0P) ‚Í‚Ÿ` ;P0P) =3 ‚Í‚Ÿ` GP0P) =3 ‚Í‚Ÿ` (;P0P) =3 ‚Í‚Ÿ` ( ;P0P) =3 ‚Í‚Ÿ` (GP0P) =3 ‚Í‚Ÿ` ;P0P) =‚R ‚Í‚Ÿ` GP0P) =‚R ‚Í‚Ÿ` (;P0P) =‚R ‚Í‚Ÿ` ( ;P0P) =‚R ‚Í‚Ÿ` (GP0P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*P0P*)
‚Í‚Ÿ` (–P0P–) (*P0P*) ‚Í‚Ÿ` (–P0P–) ‚Í‚Ÿ` ε= (*P0P*) ‚Í‚Ÿ` ε= (–P0P–) ‚Í‚Ÿ` C= (*P0P*) ‚Í‚Ÿ` C= (–P0P–) ‚Í‚Ÿ` (*P0P*) =3 ‚Í‚Ÿ` (–P0P–) =3 ‚Í‚Ÿ` (*P0P*) =‚R ‚Í‚Ÿ` (–P0P–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P0P* ‚Í‚Ÿ`
(P0P– ‚Í‚Ÿ` (P0P*) ‚Í‚Ÿ` (P0P–) ‚Í‚Ÿ` ε= (P0P* ‚Í‚Ÿ` ε= (P0P– ‚Í‚Ÿ` ε= (P0P*) ‚Í‚Ÿ` ε= (P0P–) ‚Í‚Ÿ` C= (P0P* ‚Í‚Ÿ` C= (P0P– ‚Í‚Ÿ` C= (P0P*) ‚Í‚Ÿ` C= (P0P–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*P0P) ‚Í‚Ÿ`
–P0P) ‚Í‚Ÿ` (*P0P) ‚Í‚Ÿ` (–P0P) ‚Í‚Ÿ` *P0P) =3 ‚Í‚Ÿ` –P0P) =3 ‚Í‚Ÿ` (*P0P) =3 ‚Í‚Ÿ` (–P0P) =3 ‚Í‚Ÿ` *P0P) =‚R ‚Í‚Ÿ` –P0P) =‚R ‚Í‚Ÿ` (*P0P) =‚R ‚Í‚Ÿ` (–P0P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VP0PV) (VP0PV) ‚Í‚Ÿ` ε= (VP0PV) ‚Í‚Ÿ` C= (VP0PV) ‚Í‚Ÿ` (VP0PV) =3 ‚Í‚Ÿ` (VP0PV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P0PV ‚Í‚Ÿ` (P0PV) ‚Í‚Ÿ` ε= (P0PV ‚Í‚Ÿ` ε= (P0PV) ‚Í‚Ÿ` C= (P0PV ‚Í‚Ÿ` C= (P0PV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VP0P) ‚Í‚Ÿ` (VP0P) ‚Í‚Ÿ` VP0P) =3 ‚Í‚Ÿ` (VP0P) =3 ‚Í‚Ÿ` VP0P) =‚R ‚Í‚Ÿ` (VP0P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (P‚OP) (P‚OP) ‚Í‚Ÿ` ε= (P‚OP) ‚Í‚Ÿ` C= (P‚OP) ‚Í‚Ÿ` (P‚OP) =3 ‚Í‚Ÿ` (P‚OP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( P‚OP ) ( P‚OP ) ‚Í‚Ÿ` ε= ( P‚OP ) ‚Í‚Ÿ` C= ( P‚OP ) ‚Í‚Ÿ` ( P‚OP ) =3 ‚Í‚Ÿ` ( P‚OP ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚OP ‚Í‚Ÿ` (P‚OP ) ‚Í‚Ÿ` (P‚OP@) ‚Í‚Ÿ` ε= (P‚OP ‚Í‚Ÿ` ε= (P‚OP ) ‚Í‚Ÿ` ε= (P‚OP@) ‚Í‚Ÿ` C= (P‚OP ‚Í‚Ÿ` C= (P‚OP ) ‚Í‚Ÿ` C= (P‚OP@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
P‚OP) ‚Í‚Ÿ` ( P‚OP) ‚Í‚Ÿ` (@P‚OP) ‚Í‚Ÿ` P‚OP) =3 ‚Í‚Ÿ` ( P‚OP) =3 ‚Í‚Ÿ` (@P‚OP) =3 ‚Í‚Ÿ` P‚OP) =‚R ‚Í‚Ÿ` ( P‚OP) =‚R ‚Í‚Ÿ` (@P‚OP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;P‚OP;)
‚Í‚Ÿ` (GP‚OPG) (;P‚OP;) ‚Í‚Ÿ` (GP‚OPG) ‚Í‚Ÿ` ε= (;P‚OP;) ‚Í‚Ÿ` ε= (GP‚OPG) ‚Í‚Ÿ` C= (;P‚OP;) ‚Í‚Ÿ` C= (GP‚OPG) ‚Í‚Ÿ` (;P‚OP;) =3 ‚Í‚Ÿ` (GP‚OPG) =3 ‚Í‚Ÿ` (;P‚OP;) =‚R ‚Í‚Ÿ` (GP‚OPG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚OP; ‚Í‚Ÿ`
(P‚OPG ‚Í‚Ÿ` (P‚OP;) ‚Í‚Ÿ` (P‚OP; ) ‚Í‚Ÿ` (P‚OPG) ‚Í‚Ÿ` ε= (P‚OP; ‚Í‚Ÿ` ε= (P‚OPG ‚Í‚Ÿ` ε= (P‚OP;) ‚Í‚Ÿ` ε= (P‚OP; ) ‚Í‚Ÿ` ε= (P‚OPG) ‚Í‚Ÿ` C= (P‚OP; ‚Í‚Ÿ` C= (P‚OPG ‚Í‚Ÿ` C= (P‚OP;) ‚Í‚Ÿ` C= (P‚OP; ) ‚Í‚Ÿ` C= (P‚OPG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;P‚OP) ‚Í‚Ÿ`
GP‚OP) ‚Í‚Ÿ` (;P‚OP) ‚Í‚Ÿ` ( ;P‚OP) ‚Í‚Ÿ` (GP‚OP) ‚Í‚Ÿ` ;P‚OP) =3 ‚Í‚Ÿ` GP‚OP) =3 ‚Í‚Ÿ` (;P‚OP) =3 ‚Í‚Ÿ` ( ;P‚OP) =3 ‚Í‚Ÿ` (GP‚OP) =3 ‚Í‚Ÿ` ;P‚OP) =‚R ‚Í‚Ÿ` GP‚OP) =‚R ‚Í‚Ÿ` (;P‚OP) =‚R ‚Í‚Ÿ` ( ;P‚OP) =‚R ‚Í‚Ÿ` (GP‚OP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*P‚OP*)
‚Í‚Ÿ` (–P‚OP–) (*P‚OP*) ‚Í‚Ÿ` (–P‚OP–) ‚Í‚Ÿ` ε= (*P‚OP*) ‚Í‚Ÿ` ε= (–P‚OP–) ‚Í‚Ÿ` C= (*P‚OP*) ‚Í‚Ÿ` C= (–P‚OP–) ‚Í‚Ÿ` (*P‚OP*) =3 ‚Í‚Ÿ` (–P‚OP–) =3 ‚Í‚Ÿ` (*P‚OP*) =‚R ‚Í‚Ÿ` (–P‚OP–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚OP* ‚Í‚Ÿ`
(P‚OP– ‚Í‚Ÿ` (P‚OP*) ‚Í‚Ÿ` (P‚OP–) ‚Í‚Ÿ` ε= (P‚OP* ‚Í‚Ÿ` ε= (P‚OP– ‚Í‚Ÿ` ε= (P‚OP*) ‚Í‚Ÿ` ε= (P‚OP–) ‚Í‚Ÿ` C= (P‚OP* ‚Í‚Ÿ` C= (P‚OP– ‚Í‚Ÿ` C= (P‚OP*) ‚Í‚Ÿ` C= (P‚OP–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*P‚OP) ‚Í‚Ÿ`
–P‚OP) ‚Í‚Ÿ` (*P‚OP) ‚Í‚Ÿ` (–P‚OP) ‚Í‚Ÿ` *P‚OP) =3 ‚Í‚Ÿ` –P‚OP) =3 ‚Í‚Ÿ` (*P‚OP) =3 ‚Í‚Ÿ` (–P‚OP) =3 ‚Í‚Ÿ` *P‚OP) =‚R ‚Í‚Ÿ` –P‚OP) =‚R ‚Í‚Ÿ` (*P‚OP) =‚R ‚Í‚Ÿ` (–P‚OP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VP‚OPV) (VP‚OPV) ‚Í‚Ÿ` ε= (VP‚OPV) ‚Í‚Ÿ` C= (VP‚OPV) ‚Í‚Ÿ` (VP‚OPV) =3 ‚Í‚Ÿ` (VP‚OPV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚OPV ‚Í‚Ÿ` (P‚OPV) ‚Í‚Ÿ` ε= (P‚OPV ‚Í‚Ÿ` ε= (P‚OPV) ‚Í‚Ÿ` C= (P‚OPV ‚Í‚Ÿ` C= (P‚OPV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VP‚OP) ‚Í‚Ÿ` (VP‚OP) ‚Í‚Ÿ` VP‚OP) =3 ‚Í‚Ÿ` (VP‚OP) =3 ‚Í‚Ÿ` VP‚OP) =‚R ‚Í‚Ÿ` (VP‚OP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (P‚nP) (P‚nP) ‚Í‚Ÿ` ε= (P‚nP) ‚Í‚Ÿ` C= (P‚nP) ‚Í‚Ÿ` (P‚nP) =3 ‚Í‚Ÿ` (P‚nP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( P‚nP ) ( P‚nP ) ‚Í‚Ÿ` ε= ( P‚nP ) ‚Í‚Ÿ` C= ( P‚nP ) ‚Í‚Ÿ` ( P‚nP ) =3 ‚Í‚Ÿ` ( P‚nP ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚nP ‚Í‚Ÿ` (P‚nP ) ‚Í‚Ÿ` (P‚nP@) ‚Í‚Ÿ` ε= (P‚nP ‚Í‚Ÿ` ε= (P‚nP ) ‚Í‚Ÿ` ε= (P‚nP@) ‚Í‚Ÿ` C= (P‚nP ‚Í‚Ÿ` C= (P‚nP ) ‚Í‚Ÿ` C= (P‚nP@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
P‚nP) ‚Í‚Ÿ` ( P‚nP) ‚Í‚Ÿ` (@P‚nP) ‚Í‚Ÿ` P‚nP) =3 ‚Í‚Ÿ` ( P‚nP) =3 ‚Í‚Ÿ` (@P‚nP) =3 ‚Í‚Ÿ` P‚nP) =‚R ‚Í‚Ÿ` ( P‚nP) =‚R ‚Í‚Ÿ` (@P‚nP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;P‚nP;)
‚Í‚Ÿ` (GP‚nPG) (;P‚nP;) ‚Í‚Ÿ` (GP‚nPG) ‚Í‚Ÿ` ε= (;P‚nP;) ‚Í‚Ÿ` ε= (GP‚nPG) ‚Í‚Ÿ` C= (;P‚nP;) ‚Í‚Ÿ` C= (GP‚nPG) ‚Í‚Ÿ` (;P‚nP;) =3 ‚Í‚Ÿ` (GP‚nPG) =3 ‚Í‚Ÿ` (;P‚nP;) =‚R ‚Í‚Ÿ` (GP‚nPG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚nP; ‚Í‚Ÿ`
(P‚nPG ‚Í‚Ÿ` (P‚nP;) ‚Í‚Ÿ` (P‚nP; ) ‚Í‚Ÿ` (P‚nPG) ‚Í‚Ÿ` ε= (P‚nP; ‚Í‚Ÿ` ε= (P‚nPG ‚Í‚Ÿ` ε= (P‚nP;) ‚Í‚Ÿ` ε= (P‚nP; ) ‚Í‚Ÿ` ε= (P‚nPG) ‚Í‚Ÿ` C= (P‚nP; ‚Í‚Ÿ` C= (P‚nPG ‚Í‚Ÿ` C= (P‚nP;) ‚Í‚Ÿ` C= (P‚nP; ) ‚Í‚Ÿ` C= (P‚nPG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;P‚nP) ‚Í‚Ÿ`
GP‚nP) ‚Í‚Ÿ` (;P‚nP) ‚Í‚Ÿ` ( ;P‚nP) ‚Í‚Ÿ` (GP‚nP) ‚Í‚Ÿ` ;P‚nP) =3 ‚Í‚Ÿ` GP‚nP) =3 ‚Í‚Ÿ` (;P‚nP) =3 ‚Í‚Ÿ` ( ;P‚nP) =3 ‚Í‚Ÿ` (GP‚nP) =3 ‚Í‚Ÿ` ;P‚nP) =‚R ‚Í‚Ÿ` GP‚nP) =‚R ‚Í‚Ÿ` (;P‚nP) =‚R ‚Í‚Ÿ` ( ;P‚nP) =‚R ‚Í‚Ÿ` (GP‚nP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*P‚nP*)
‚Í‚Ÿ` (–P‚nP–) (*P‚nP*) ‚Í‚Ÿ` (–P‚nP–) ‚Í‚Ÿ` ε= (*P‚nP*) ‚Í‚Ÿ` ε= (–P‚nP–) ‚Í‚Ÿ` C= (*P‚nP*) ‚Í‚Ÿ` C= (–P‚nP–) ‚Í‚Ÿ` (*P‚nP*) =3 ‚Í‚Ÿ` (–P‚nP–) =3 ‚Í‚Ÿ` (*P‚nP*) =‚R ‚Í‚Ÿ` (–P‚nP–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚nP* ‚Í‚Ÿ`
(P‚nP– ‚Í‚Ÿ` (P‚nP*) ‚Í‚Ÿ` (P‚nP–) ‚Í‚Ÿ` ε= (P‚nP* ‚Í‚Ÿ` ε= (P‚nP– ‚Í‚Ÿ` ε= (P‚nP*) ‚Í‚Ÿ` ε= (P‚nP–) ‚Í‚Ÿ` C= (P‚nP* ‚Í‚Ÿ` C= (P‚nP– ‚Í‚Ÿ` C= (P‚nP*) ‚Í‚Ÿ` C= (P‚nP–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*P‚nP) ‚Í‚Ÿ`
–P‚nP) ‚Í‚Ÿ` (*P‚nP) ‚Í‚Ÿ` (–P‚nP) ‚Í‚Ÿ` *P‚nP) =3 ‚Í‚Ÿ` –P‚nP) =3 ‚Í‚Ÿ` (*P‚nP) =3 ‚Í‚Ÿ` (–P‚nP) =3 ‚Í‚Ÿ` *P‚nP) =‚R ‚Í‚Ÿ` –P‚nP) =‚R ‚Í‚Ÿ` (*P‚nP) =‚R ‚Í‚Ÿ` (–P‚nP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VP‚nPV) (VP‚nPV) ‚Í‚Ÿ` ε= (VP‚nPV) ‚Í‚Ÿ` C= (VP‚nPV) ‚Í‚Ÿ` (VP‚nPV) =3 ‚Í‚Ÿ` (VP‚nPV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P‚nPV ‚Í‚Ÿ` (P‚nPV) ‚Í‚Ÿ` ε= (P‚nPV ‚Í‚Ÿ` ε= (P‚nPV) ‚Í‚Ÿ` C= (P‚nPV ‚Í‚Ÿ` C= (P‚nPV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VP‚nP) ‚Í‚Ÿ` (VP‚nP) ‚Í‚Ÿ` VP‚nP) =3 ‚Í‚Ÿ` (VP‚nP) =3 ‚Í‚Ÿ` VP‚nP) =‚R ‚Í‚Ÿ` (VP‚nP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (P∇P) (P∇P) ‚Í‚Ÿ` ε= (P∇P) ‚Í‚Ÿ` C= (P∇P) ‚Í‚Ÿ` (P∇P) =3 ‚Í‚Ÿ` (P∇P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( P∇P ) ( P∇P ) ‚Í‚Ÿ` ε= ( P∇P ) ‚Í‚Ÿ` C= ( P∇P ) ‚Í‚Ÿ` ( P∇P ) =3 ‚Í‚Ÿ` ( P∇P ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P∇P ‚Í‚Ÿ` (P∇P ) ‚Í‚Ÿ` (P∇P@) ‚Í‚Ÿ` ε= (P∇P ‚Í‚Ÿ` ε= (P∇P ) ‚Í‚Ÿ` ε= (P∇P@) ‚Í‚Ÿ` C= (P∇P ‚Í‚Ÿ` C= (P∇P ) ‚Í‚Ÿ` C= (P∇P@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
P∇P) ‚Í‚Ÿ` ( P∇P) ‚Í‚Ÿ` (@P∇P) ‚Í‚Ÿ` P∇P) =3 ‚Í‚Ÿ` ( P∇P) =3 ‚Í‚Ÿ` (@P∇P) =3 ‚Í‚Ÿ` P∇P) =‚R ‚Í‚Ÿ` ( P∇P) =‚R ‚Í‚Ÿ` (@P∇P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;P∇P;)
‚Í‚Ÿ` (GP∇PG) (;P∇P;) ‚Í‚Ÿ` (GP∇PG) ‚Í‚Ÿ` ε= (;P∇P;) ‚Í‚Ÿ` ε= (GP∇PG) ‚Í‚Ÿ` C= (;P∇P;) ‚Í‚Ÿ` C= (GP∇PG) ‚Í‚Ÿ` (;P∇P;) =3 ‚Í‚Ÿ` (GP∇PG) =3 ‚Í‚Ÿ` (;P∇P;) =‚R ‚Í‚Ÿ` (GP∇PG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P∇P; ‚Í‚Ÿ`
(P∇PG ‚Í‚Ÿ` (P∇P;) ‚Í‚Ÿ` (P∇P; ) ‚Í‚Ÿ` (P∇PG) ‚Í‚Ÿ` ε= (P∇P; ‚Í‚Ÿ` ε= (P∇PG ‚Í‚Ÿ` ε= (P∇P;) ‚Í‚Ÿ` ε= (P∇P; ) ‚Í‚Ÿ` ε= (P∇PG) ‚Í‚Ÿ` C= (P∇P; ‚Í‚Ÿ` C= (P∇PG ‚Í‚Ÿ` C= (P∇P;) ‚Í‚Ÿ` C= (P∇P; ) ‚Í‚Ÿ` C= (P∇PG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;P∇P) ‚Í‚Ÿ`
GP∇P) ‚Í‚Ÿ` (;P∇P) ‚Í‚Ÿ` ( ;P∇P) ‚Í‚Ÿ` (GP∇P) ‚Í‚Ÿ` ;P∇P) =3 ‚Í‚Ÿ` GP∇P) =3 ‚Í‚Ÿ` (;P∇P) =3 ‚Í‚Ÿ` ( ;P∇P) =3 ‚Í‚Ÿ` (GP∇P) =3 ‚Í‚Ÿ` ;P∇P) =‚R ‚Í‚Ÿ` GP∇P) =‚R ‚Í‚Ÿ` (;P∇P) =‚R ‚Í‚Ÿ` ( ;P∇P) =‚R ‚Í‚Ÿ` (GP∇P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*P∇P*)
‚Í‚Ÿ` (–P∇P–) (*P∇P*) ‚Í‚Ÿ` (–P∇P–) ‚Í‚Ÿ` ε= (*P∇P*) ‚Í‚Ÿ` ε= (–P∇P–) ‚Í‚Ÿ` C= (*P∇P*) ‚Í‚Ÿ` C= (–P∇P–) ‚Í‚Ÿ` (*P∇P*) =3 ‚Í‚Ÿ` (–P∇P–) =3 ‚Í‚Ÿ` (*P∇P*) =‚R ‚Í‚Ÿ` (–P∇P–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P∇P* ‚Í‚Ÿ`
(P∇P– ‚Í‚Ÿ` (P∇P*) ‚Í‚Ÿ` (P∇P–) ‚Í‚Ÿ` ε= (P∇P* ‚Í‚Ÿ` ε= (P∇P– ‚Í‚Ÿ` ε= (P∇P*) ‚Í‚Ÿ` ε= (P∇P–) ‚Í‚Ÿ` C= (P∇P* ‚Í‚Ÿ` C= (P∇P– ‚Í‚Ÿ` C= (P∇P*) ‚Í‚Ÿ` C= (P∇P–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*P∇P) ‚Í‚Ÿ`
–P∇P) ‚Í‚Ÿ` (*P∇P) ‚Í‚Ÿ` (–P∇P) ‚Í‚Ÿ` *P∇P) =3 ‚Í‚Ÿ` –P∇P) =3 ‚Í‚Ÿ` (*P∇P) =3 ‚Í‚Ÿ` (–P∇P) =3 ‚Í‚Ÿ` *P∇P) =‚R ‚Í‚Ÿ` –P∇P) =‚R ‚Í‚Ÿ` (*P∇P) =‚R ‚Í‚Ÿ` (–P∇P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VP∇PV) (VP∇PV) ‚Í‚Ÿ` ε= (VP∇PV) ‚Í‚Ÿ` C= (VP∇PV) ‚Í‚Ÿ` (VP∇PV) =3 ‚Í‚Ÿ` (VP∇PV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P∇PV ‚Í‚Ÿ` (P∇PV) ‚Í‚Ÿ` ε= (P∇PV ‚Í‚Ÿ` ε= (P∇PV) ‚Í‚Ÿ` C= (P∇PV ‚Í‚Ÿ` C= (P∇PV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VP∇P) ‚Í‚Ÿ` (VP∇P) ‚Í‚Ÿ` VP∇P) =3 ‚Í‚Ÿ` (VP∇P) =3 ‚Í‚Ÿ` VP∇P) =‚R ‚Í‚Ÿ` (VP∇P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (P¤P) (P¤P) ‚Í‚Ÿ` ε= (P¤P) ‚Í‚Ÿ` C= (P¤P) ‚Í‚Ÿ` (P¤P) =3 ‚Í‚Ÿ` (P¤P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( P¤P ) ( P¤P ) ‚Í‚Ÿ` ε= ( P¤P ) ‚Í‚Ÿ` C= ( P¤P ) ‚Í‚Ÿ` ( P¤P ) =3 ‚Í‚Ÿ` ( P¤P ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P¤P ‚Í‚Ÿ` (P¤P ) ‚Í‚Ÿ` (P¤P@) ‚Í‚Ÿ` ε= (P¤P ‚Í‚Ÿ` ε= (P¤P ) ‚Í‚Ÿ` ε= (P¤P@) ‚Í‚Ÿ` C= (P¤P ‚Í‚Ÿ` C= (P¤P ) ‚Í‚Ÿ` C= (P¤P@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
P¤P) ‚Í‚Ÿ` ( P¤P) ‚Í‚Ÿ` (@P¤P) ‚Í‚Ÿ` P¤P) =3 ‚Í‚Ÿ` ( P¤P) =3 ‚Í‚Ÿ` (@P¤P) =3 ‚Í‚Ÿ` P¤P) =‚R ‚Í‚Ÿ` ( P¤P) =‚R ‚Í‚Ÿ` (@P¤P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;P¤P;)
‚Í‚Ÿ` (GP¤PG) (;P¤P;) ‚Í‚Ÿ` (GP¤PG) ‚Í‚Ÿ` ε= (;P¤P;) ‚Í‚Ÿ` ε= (GP¤PG) ‚Í‚Ÿ` C= (;P¤P;) ‚Í‚Ÿ` C= (GP¤PG) ‚Í‚Ÿ` (;P¤P;) =3 ‚Í‚Ÿ` (GP¤PG) =3 ‚Í‚Ÿ` (;P¤P;) =‚R ‚Í‚Ÿ` (GP¤PG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P¤P; ‚Í‚Ÿ`
(P¤PG ‚Í‚Ÿ` (P¤P;) ‚Í‚Ÿ` (P¤P; ) ‚Í‚Ÿ` (P¤PG) ‚Í‚Ÿ` ε= (P¤P; ‚Í‚Ÿ` ε= (P¤PG ‚Í‚Ÿ` ε= (P¤P;) ‚Í‚Ÿ` ε= (P¤P; ) ‚Í‚Ÿ` ε= (P¤PG) ‚Í‚Ÿ` C= (P¤P; ‚Í‚Ÿ` C= (P¤PG ‚Í‚Ÿ` C= (P¤P;) ‚Í‚Ÿ` C= (P¤P; ) ‚Í‚Ÿ` C= (P¤PG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;P¤P) ‚Í‚Ÿ`
GP¤P) ‚Í‚Ÿ` (;P¤P) ‚Í‚Ÿ` ( ;P¤P) ‚Í‚Ÿ` (GP¤P) ‚Í‚Ÿ` ;P¤P) =3 ‚Í‚Ÿ` GP¤P) =3 ‚Í‚Ÿ` (;P¤P) =3 ‚Í‚Ÿ` ( ;P¤P) =3 ‚Í‚Ÿ` (GP¤P) =3 ‚Í‚Ÿ` ;P¤P) =‚R ‚Í‚Ÿ` GP¤P) =‚R ‚Í‚Ÿ` (;P¤P) =‚R ‚Í‚Ÿ` ( ;P¤P) =‚R ‚Í‚Ÿ` (GP¤P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*P¤P*)
‚Í‚Ÿ` (–P¤P–) (*P¤P*) ‚Í‚Ÿ` (–P¤P–) ‚Í‚Ÿ` ε= (*P¤P*) ‚Í‚Ÿ` ε= (–P¤P–) ‚Í‚Ÿ` C= (*P¤P*) ‚Í‚Ÿ` C= (–P¤P–) ‚Í‚Ÿ` (*P¤P*) =3 ‚Í‚Ÿ` (–P¤P–) =3 ‚Í‚Ÿ` (*P¤P*) =‚R ‚Í‚Ÿ` (–P¤P–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P¤P* ‚Í‚Ÿ`
(P¤P– ‚Í‚Ÿ` (P¤P*) ‚Í‚Ÿ` (P¤P–) ‚Í‚Ÿ` ε= (P¤P* ‚Í‚Ÿ` ε= (P¤P– ‚Í‚Ÿ` ε= (P¤P*) ‚Í‚Ÿ` ε= (P¤P–) ‚Í‚Ÿ` C= (P¤P* ‚Í‚Ÿ` C= (P¤P– ‚Í‚Ÿ` C= (P¤P*) ‚Í‚Ÿ` C= (P¤P–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*P¤P) ‚Í‚Ÿ`
–P¤P) ‚Í‚Ÿ` (*P¤P) ‚Í‚Ÿ` (–P¤P) ‚Í‚Ÿ` *P¤P) =3 ‚Í‚Ÿ` –P¤P) =3 ‚Í‚Ÿ` (*P¤P) =3 ‚Í‚Ÿ` (–P¤P) =3 ‚Í‚Ÿ` *P¤P) =‚R ‚Í‚Ÿ` –P¤P) =‚R ‚Í‚Ÿ` (*P¤P) =‚R ‚Í‚Ÿ` (–P¤P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VP¤PV) (VP¤PV) ‚Í‚Ÿ` ε= (VP¤PV) ‚Í‚Ÿ` C= (VP¤PV) ‚Í‚Ÿ` (VP¤PV) =3 ‚Í‚Ÿ` (VP¤PV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P¤PV ‚Í‚Ÿ` (P¤PV) ‚Í‚Ÿ` ε= (P¤PV ‚Í‚Ÿ` ε= (P¤PV) ‚Í‚Ÿ` C= (P¤PV ‚Í‚Ÿ` C= (P¤PV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VP¤P) ‚Í‚Ÿ` (VP¤P) ‚Í‚Ÿ` VP¤P) =3 ‚Í‚Ÿ` (VP¤P) =3 ‚Í‚Ÿ` VP¤P) =‚R ‚Í‚Ÿ` (VP¤P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (P∀P) (P∀P) ‚Í‚Ÿ` ε= (P∀P) ‚Í‚Ÿ` C= (P∀P) ‚Í‚Ÿ` (P∀P) =3 ‚Í‚Ÿ` (P∀P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( P∀P ) ( P∀P ) ‚Í‚Ÿ` ε= ( P∀P ) ‚Í‚Ÿ` C= ( P∀P ) ‚Í‚Ÿ` ( P∀P ) =3 ‚Í‚Ÿ` ( P∀P ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P∀P ‚Í‚Ÿ` (P∀P ) ‚Í‚Ÿ` (P∀P@) ‚Í‚Ÿ` ε= (P∀P ‚Í‚Ÿ` ε= (P∀P ) ‚Í‚Ÿ` ε= (P∀P@) ‚Í‚Ÿ` C= (P∀P ‚Í‚Ÿ` C= (P∀P ) ‚Í‚Ÿ` C= (P∀P@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
P∀P) ‚Í‚Ÿ` ( P∀P) ‚Í‚Ÿ` (@P∀P) ‚Í‚Ÿ` P∀P) =3 ‚Í‚Ÿ` ( P∀P) =3 ‚Í‚Ÿ` (@P∀P) =3 ‚Í‚Ÿ` P∀P) =‚R ‚Í‚Ÿ` ( P∀P) =‚R ‚Í‚Ÿ` (@P∀P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;P∀P;)
‚Í‚Ÿ` (GP∀PG) (;P∀P;) ‚Í‚Ÿ` (GP∀PG) ‚Í‚Ÿ` ε= (;P∀P;) ‚Í‚Ÿ` ε= (GP∀PG) ‚Í‚Ÿ` C= (;P∀P;) ‚Í‚Ÿ` C= (GP∀PG) ‚Í‚Ÿ` (;P∀P;) =3 ‚Í‚Ÿ` (GP∀PG) =3 ‚Í‚Ÿ` (;P∀P;) =‚R ‚Í‚Ÿ` (GP∀PG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P∀P; ‚Í‚Ÿ`
(P∀PG ‚Í‚Ÿ` (P∀P;) ‚Í‚Ÿ` (P∀P; ) ‚Í‚Ÿ` (P∀PG) ‚Í‚Ÿ` ε= (P∀P; ‚Í‚Ÿ` ε= (P∀PG ‚Í‚Ÿ` ε= (P∀P;) ‚Í‚Ÿ` ε= (P∀P; ) ‚Í‚Ÿ` ε= (P∀PG) ‚Í‚Ÿ` C= (P∀P; ‚Í‚Ÿ` C= (P∀PG ‚Í‚Ÿ` C= (P∀P;) ‚Í‚Ÿ` C= (P∀P; ) ‚Í‚Ÿ` C= (P∀PG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;P∀P) ‚Í‚Ÿ`
GP∀P) ‚Í‚Ÿ` (;P∀P) ‚Í‚Ÿ` ( ;P∀P) ‚Í‚Ÿ` (GP∀P) ‚Í‚Ÿ` ;P∀P) =3 ‚Í‚Ÿ` GP∀P) =3 ‚Í‚Ÿ` (;P∀P) =3 ‚Í‚Ÿ` ( ;P∀P) =3 ‚Í‚Ÿ` (GP∀P) =3 ‚Í‚Ÿ` ;P∀P) =‚R ‚Í‚Ÿ` GP∀P) =‚R ‚Í‚Ÿ` (;P∀P) =‚R ‚Í‚Ÿ` ( ;P∀P) =‚R ‚Í‚Ÿ` (GP∀P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*P∀P*)
‚Í‚Ÿ` (–P∀P–) (*P∀P*) ‚Í‚Ÿ` (–P∀P–) ‚Í‚Ÿ` ε= (*P∀P*) ‚Í‚Ÿ` ε= (–P∀P–) ‚Í‚Ÿ` C= (*P∀P*) ‚Í‚Ÿ` C= (–P∀P–) ‚Í‚Ÿ` (*P∀P*) =3 ‚Í‚Ÿ` (–P∀P–) =3 ‚Í‚Ÿ` (*P∀P*) =‚R ‚Í‚Ÿ` (–P∀P–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P∀P* ‚Í‚Ÿ`
(P∀P– ‚Í‚Ÿ` (P∀P*) ‚Í‚Ÿ` (P∀P–) ‚Í‚Ÿ` ε= (P∀P* ‚Í‚Ÿ` ε= (P∀P– ‚Í‚Ÿ` ε= (P∀P*) ‚Í‚Ÿ` ε= (P∀P–) ‚Í‚Ÿ` C= (P∀P* ‚Í‚Ÿ` C= (P∀P– ‚Í‚Ÿ` C= (P∀P*) ‚Í‚Ÿ` C= (P∀P–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*P∀P) ‚Í‚Ÿ`
–P∀P) ‚Í‚Ÿ` (*P∀P) ‚Í‚Ÿ` (–P∀P) ‚Í‚Ÿ` *P∀P) =3 ‚Í‚Ÿ` –P∀P) =3 ‚Í‚Ÿ` (*P∀P) =3 ‚Í‚Ÿ` (–P∀P) =3 ‚Í‚Ÿ` *P∀P) =‚R ‚Í‚Ÿ` –P∀P) =‚R ‚Í‚Ÿ` (*P∀P) =‚R ‚Í‚Ÿ` (–P∀P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VP∀PV) (VP∀PV) ‚Í‚Ÿ` ε= (VP∀PV) ‚Í‚Ÿ` C= (VP∀PV) ‚Í‚Ÿ` (VP∀PV) =3 ‚Í‚Ÿ` (VP∀PV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P∀PV ‚Í‚Ÿ` (P∀PV) ‚Í‚Ÿ` ε= (P∀PV ‚Í‚Ÿ` ε= (P∀PV) ‚Í‚Ÿ` C= (P∀PV ‚Í‚Ÿ` C= (P∀PV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VP∀P) ‚Í‚Ÿ` (VP∀P) ‚Í‚Ÿ` VP∀P) =3 ‚Í‚Ÿ` (VP∀P) =3 ‚Í‚Ÿ` VP∀P) =‚R ‚Í‚Ÿ` (VP∀P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (PžP) (PžP) ‚Í‚Ÿ` ε= (PžP) ‚Í‚Ÿ` C= (PžP) ‚Í‚Ÿ` (PžP) =3 ‚Í‚Ÿ` (PžP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( PžP ) ( PžP ) ‚Í‚Ÿ` ε= ( PžP ) ‚Í‚Ÿ` C= ( PžP ) ‚Í‚Ÿ` ( PžP ) =3 ‚Í‚Ÿ` ( PžP ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PžP ‚Í‚Ÿ` (PžP ) ‚Í‚Ÿ` (PžP@) ‚Í‚Ÿ` ε= (PžP ‚Í‚Ÿ` ε= (PžP ) ‚Í‚Ÿ` ε= (PžP@) ‚Í‚Ÿ` C= (PžP ‚Í‚Ÿ` C= (PžP ) ‚Í‚Ÿ` C= (PžP@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
PžP) ‚Í‚Ÿ` ( PžP) ‚Í‚Ÿ` (@PžP) ‚Í‚Ÿ` PžP) =3 ‚Í‚Ÿ` ( PžP) =3 ‚Í‚Ÿ` (@PžP) =3 ‚Í‚Ÿ` PžP) =‚R ‚Í‚Ÿ` ( PžP) =‚R ‚Í‚Ÿ` (@PžP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;PžP;)
‚Í‚Ÿ` (GPžPG) (;PžP;) ‚Í‚Ÿ` (GPžPG) ‚Í‚Ÿ` ε= (;PžP;) ‚Í‚Ÿ` ε= (GPžPG) ‚Í‚Ÿ` C= (;PžP;) ‚Í‚Ÿ` C= (GPžPG) ‚Í‚Ÿ` (;PžP;) =3 ‚Í‚Ÿ` (GPžPG) =3 ‚Í‚Ÿ` (;PžP;) =‚R ‚Í‚Ÿ` (GPžPG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PžP; ‚Í‚Ÿ`
(PžPG ‚Í‚Ÿ` (PžP;) ‚Í‚Ÿ` (PžP; ) ‚Í‚Ÿ` (PžPG) ‚Í‚Ÿ` ε= (PžP; ‚Í‚Ÿ` ε= (PžPG ‚Í‚Ÿ` ε= (PžP;) ‚Í‚Ÿ` ε= (PžP; ) ‚Í‚Ÿ` ε= (PžPG) ‚Í‚Ÿ` C= (PžP; ‚Í‚Ÿ` C= (PžPG ‚Í‚Ÿ` C= (PžP;) ‚Í‚Ÿ` C= (PžP; ) ‚Í‚Ÿ` C= (PžPG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;PžP) ‚Í‚Ÿ`
GPžP) ‚Í‚Ÿ` (;PžP) ‚Í‚Ÿ` ( ;PžP) ‚Í‚Ÿ` (GPžP) ‚Í‚Ÿ` ;PžP) =3 ‚Í‚Ÿ` GPžP) =3 ‚Í‚Ÿ` (;PžP) =3 ‚Í‚Ÿ` ( ;PžP) =3 ‚Í‚Ÿ` (GPžP) =3 ‚Í‚Ÿ` ;PžP) =‚R ‚Í‚Ÿ` GPžP) =‚R ‚Í‚Ÿ` (;PžP) =‚R ‚Í‚Ÿ` ( ;PžP) =‚R ‚Í‚Ÿ` (GPžP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*PžP*)
‚Í‚Ÿ` (–PžP–) (*PžP*) ‚Í‚Ÿ` (–PžP–) ‚Í‚Ÿ` ε= (*PžP*) ‚Í‚Ÿ` ε= (–PžP–) ‚Í‚Ÿ` C= (*PžP*) ‚Í‚Ÿ` C= (–PžP–) ‚Í‚Ÿ` (*PžP*) =3 ‚Í‚Ÿ` (–PžP–) =3 ‚Í‚Ÿ` (*PžP*) =‚R ‚Í‚Ÿ` (–PžP–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PžP* ‚Í‚Ÿ`
(PžP– ‚Í‚Ÿ` (PžP*) ‚Í‚Ÿ` (PžP–) ‚Í‚Ÿ` ε= (PžP* ‚Í‚Ÿ` ε= (PžP– ‚Í‚Ÿ` ε= (PžP*) ‚Í‚Ÿ` ε= (PžP–) ‚Í‚Ÿ` C= (PžP* ‚Í‚Ÿ` C= (PžP– ‚Í‚Ÿ` C= (PžP*) ‚Í‚Ÿ` C= (PžP–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*PžP) ‚Í‚Ÿ`
–PžP) ‚Í‚Ÿ` (*PžP) ‚Í‚Ÿ` (–PžP) ‚Í‚Ÿ` *PžP) =3 ‚Í‚Ÿ` –PžP) =3 ‚Í‚Ÿ` (*PžP) =3 ‚Í‚Ÿ` (–PžP) =3 ‚Í‚Ÿ` *PžP) =‚R ‚Í‚Ÿ` –PžP) =‚R ‚Í‚Ÿ` (*PžP) =‚R ‚Í‚Ÿ` (–PžP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VPžPV) (VPžPV) ‚Í‚Ÿ` ε= (VPžPV) ‚Í‚Ÿ` C= (VPžPV) ‚Í‚Ÿ` (VPžPV) =3 ‚Í‚Ÿ` (VPžPV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PžPV ‚Í‚Ÿ` (PžPV) ‚Í‚Ÿ` ε= (PžPV ‚Í‚Ÿ` ε= (PžPV) ‚Í‚Ÿ` C= (PžPV ‚Í‚Ÿ` C= (PžPV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VPžP) ‚Í‚Ÿ` (VPžP) ‚Í‚Ÿ` VPžP) =3 ‚Í‚Ÿ` (VPžP) =3 ‚Í‚Ÿ` VPžP) =‚R ‚Í‚Ÿ` (VPžP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (PƒP) (PƒP) ‚Í‚Ÿ` ε= (PƒP) ‚Í‚Ÿ` C= (PƒP) ‚Í‚Ÿ` (PƒP) =3 ‚Í‚Ÿ` (PƒP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( PƒP ) ( PƒP ) ‚Í‚Ÿ` ε= ( PƒP ) ‚Í‚Ÿ` C= ( PƒP ) ‚Í‚Ÿ` ( PƒP ) =3 ‚Í‚Ÿ` ( PƒP ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PƒP ‚Í‚Ÿ` (PƒP ) ‚Í‚Ÿ` (PƒP@) ‚Í‚Ÿ` ε= (PƒP ‚Í‚Ÿ` ε= (PƒP ) ‚Í‚Ÿ` ε= (PƒP@) ‚Í‚Ÿ` C= (PƒP ‚Í‚Ÿ` C= (PƒP ) ‚Í‚Ÿ` C= (PƒP@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
PƒP) ‚Í‚Ÿ` ( PƒP) ‚Í‚Ÿ` (@PƒP) ‚Í‚Ÿ` PƒP) =3 ‚Í‚Ÿ` ( PƒP) =3 ‚Í‚Ÿ` (@PƒP) =3 ‚Í‚Ÿ` PƒP) =‚R ‚Í‚Ÿ` ( PƒP) =‚R ‚Í‚Ÿ` (@PƒP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;PƒP;)
‚Í‚Ÿ` (GPƒPG) (;PƒP;) ‚Í‚Ÿ` (GPƒPG) ‚Í‚Ÿ` ε= (;PƒP;) ‚Í‚Ÿ` ε= (GPƒPG) ‚Í‚Ÿ` C= (;PƒP;) ‚Í‚Ÿ` C= (GPƒPG) ‚Í‚Ÿ` (;PƒP;) =3 ‚Í‚Ÿ` (GPƒPG) =3 ‚Í‚Ÿ` (;PƒP;) =‚R ‚Í‚Ÿ` (GPƒPG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PƒP; ‚Í‚Ÿ`
(PƒPG ‚Í‚Ÿ` (PƒP;) ‚Í‚Ÿ` (PƒP; ) ‚Í‚Ÿ` (PƒPG) ‚Í‚Ÿ` ε= (PƒP; ‚Í‚Ÿ` ε= (PƒPG ‚Í‚Ÿ` ε= (PƒP;) ‚Í‚Ÿ` ε= (PƒP; ) ‚Í‚Ÿ` ε= (PƒPG) ‚Í‚Ÿ` C= (PƒP; ‚Í‚Ÿ` C= (PƒPG ‚Í‚Ÿ` C= (PƒP;) ‚Í‚Ÿ` C= (PƒP; ) ‚Í‚Ÿ` C= (PƒPG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;PƒP) ‚Í‚Ÿ`
GPƒP) ‚Í‚Ÿ` (;PƒP) ‚Í‚Ÿ` ( ;PƒP) ‚Í‚Ÿ` (GPƒP) ‚Í‚Ÿ` ;PƒP) =3 ‚Í‚Ÿ` GPƒP) =3 ‚Í‚Ÿ` (;PƒP) =3 ‚Í‚Ÿ` ( ;PƒP) =3 ‚Í‚Ÿ` (GPƒP) =3 ‚Í‚Ÿ` ;PƒP) =‚R ‚Í‚Ÿ` GPƒP) =‚R ‚Í‚Ÿ` (;PƒP) =‚R ‚Í‚Ÿ` ( ;PƒP) =‚R ‚Í‚Ÿ` (GPƒP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*PƒP*)
‚Í‚Ÿ` (–PƒP–) (*PƒP*) ‚Í‚Ÿ` (–PƒP–) ‚Í‚Ÿ` ε= (*PƒP*) ‚Í‚Ÿ` ε= (–PƒP–) ‚Í‚Ÿ` C= (*PƒP*) ‚Í‚Ÿ` C= (–PƒP–) ‚Í‚Ÿ` (*PƒP*) =3 ‚Í‚Ÿ` (–PƒP–) =3 ‚Í‚Ÿ` (*PƒP*) =‚R ‚Í‚Ÿ` (–PƒP–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PƒP* ‚Í‚Ÿ`
(PƒP– ‚Í‚Ÿ` (PƒP*) ‚Í‚Ÿ` (PƒP–) ‚Í‚Ÿ` ε= (PƒP* ‚Í‚Ÿ` ε= (PƒP– ‚Í‚Ÿ` ε= (PƒP*) ‚Í‚Ÿ` ε= (PƒP–) ‚Í‚Ÿ` C= (PƒP* ‚Í‚Ÿ` C= (PƒP– ‚Í‚Ÿ` C= (PƒP*) ‚Í‚Ÿ` C= (PƒP–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*PƒP) ‚Í‚Ÿ`
–PƒP) ‚Í‚Ÿ` (*PƒP) ‚Í‚Ÿ` (–PƒP) ‚Í‚Ÿ` *PƒP) =3 ‚Í‚Ÿ` –PƒP) =3 ‚Í‚Ÿ` (*PƒP) =3 ‚Í‚Ÿ` (–PƒP) =3 ‚Í‚Ÿ` *PƒP) =‚R ‚Í‚Ÿ` –PƒP) =‚R ‚Í‚Ÿ` (*PƒP) =‚R ‚Í‚Ÿ` (–PƒP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VPƒPV) (VPƒPV) ‚Í‚Ÿ` ε= (VPƒPV) ‚Í‚Ÿ` C= (VPƒPV) ‚Í‚Ÿ` (VPƒPV) =3 ‚Í‚Ÿ` (VPƒPV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PƒPV ‚Í‚Ÿ` (PƒPV) ‚Í‚Ÿ` ε= (PƒPV ‚Í‚Ÿ` ε= (PƒPV) ‚Í‚Ÿ` C= (PƒPV ‚Í‚Ÿ` C= (PƒPV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VPƒP) ‚Í‚Ÿ` (VPƒP) ‚Í‚Ÿ` VPƒP) =3 ‚Í‚Ÿ` (VPƒP) =3 ‚Í‚Ÿ` VPƒP) =‚R ‚Í‚Ÿ` (VPƒP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (PŒûP) (PŒûP) ‚Í‚Ÿ` ε= (PŒûP) ‚Í‚Ÿ` C= (PŒûP) ‚Í‚Ÿ` (PŒûP) =3 ‚Í‚Ÿ` (PŒûP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( PŒûP ) ( PŒûP ) ‚Í‚Ÿ` ε= ( PŒûP ) ‚Í‚Ÿ` C= ( PŒûP ) ‚Í‚Ÿ` ( PŒûP ) =3 ‚Í‚Ÿ` ( PŒûP ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PŒûP ‚Í‚Ÿ` (PŒûP ) ‚Í‚Ÿ` (PŒûP@) ‚Í‚Ÿ` ε= (PŒûP ‚Í‚Ÿ` ε= (PŒûP ) ‚Í‚Ÿ` ε= (PŒûP@) ‚Í‚Ÿ` C= (PŒûP ‚Í‚Ÿ` C= (PŒûP ) ‚Í‚Ÿ` C= (PŒûP@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
PŒûP) ‚Í‚Ÿ` ( PŒûP) ‚Í‚Ÿ` (@PŒûP) ‚Í‚Ÿ` PŒûP) =3 ‚Í‚Ÿ` ( PŒûP) =3 ‚Í‚Ÿ` (@PŒûP) =3 ‚Í‚Ÿ` PŒûP) =‚R ‚Í‚Ÿ` ( PŒûP) =‚R ‚Í‚Ÿ` (@PŒûP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;PŒûP;)
‚Í‚Ÿ` (GPŒûPG) (;PŒûP;) ‚Í‚Ÿ` (GPŒûPG) ‚Í‚Ÿ` ε= (;PŒûP;) ‚Í‚Ÿ` ε= (GPŒûPG) ‚Í‚Ÿ` C= (;PŒûP;) ‚Í‚Ÿ` C= (GPŒûPG) ‚Í‚Ÿ` (;PŒûP;) =3 ‚Í‚Ÿ` (GPŒûPG) =3 ‚Í‚Ÿ` (;PŒûP;) =‚R ‚Í‚Ÿ` (GPŒûPG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PŒûP; ‚Í‚Ÿ`
(PŒûPG ‚Í‚Ÿ` (PŒûP;) ‚Í‚Ÿ` (PŒûP; ) ‚Í‚Ÿ` (PŒûPG) ‚Í‚Ÿ` ε= (PŒûP; ‚Í‚Ÿ` ε= (PŒûPG ‚Í‚Ÿ` ε= (PŒûP;) ‚Í‚Ÿ` ε= (PŒûP; ) ‚Í‚Ÿ` ε= (PŒûPG) ‚Í‚Ÿ` C= (PŒûP; ‚Í‚Ÿ` C= (PŒûPG ‚Í‚Ÿ` C= (PŒûP;) ‚Í‚Ÿ` C= (PŒûP; ) ‚Í‚Ÿ` C= (PŒûPG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;PŒûP) ‚Í‚Ÿ`
GPŒûP) ‚Í‚Ÿ` (;PŒûP) ‚Í‚Ÿ` ( ;PŒûP) ‚Í‚Ÿ` (GPŒûP) ‚Í‚Ÿ` ;PŒûP) =3 ‚Í‚Ÿ` GPŒûP) =3 ‚Í‚Ÿ` (;PŒûP) =3 ‚Í‚Ÿ` ( ;PŒûP) =3 ‚Í‚Ÿ` (GPŒûP) =3 ‚Í‚Ÿ` ;PŒûP) =‚R ‚Í‚Ÿ` GPŒûP) =‚R ‚Í‚Ÿ` (;PŒûP) =‚R ‚Í‚Ÿ` ( ;PŒûP) =‚R ‚Í‚Ÿ` (GPŒûP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*PŒûP*)
‚Í‚Ÿ` (–PŒûP–) (*PŒûP*) ‚Í‚Ÿ` (–PŒûP–) ‚Í‚Ÿ` ε= (*PŒûP*) ‚Í‚Ÿ` ε= (–PŒûP–) ‚Í‚Ÿ` C= (*PŒûP*) ‚Í‚Ÿ` C= (–PŒûP–) ‚Í‚Ÿ` (*PŒûP*) =3 ‚Í‚Ÿ` (–PŒûP–) =3 ‚Í‚Ÿ` (*PŒûP*) =‚R ‚Í‚Ÿ` (–PŒûP–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PŒûP* ‚Í‚Ÿ`
(PŒûP– ‚Í‚Ÿ` (PŒûP*) ‚Í‚Ÿ` (PŒûP–) ‚Í‚Ÿ` ε= (PŒûP* ‚Í‚Ÿ` ε= (PŒûP– ‚Í‚Ÿ` ε= (PŒûP*) ‚Í‚Ÿ` ε= (PŒûP–) ‚Í‚Ÿ` C= (PŒûP* ‚Í‚Ÿ` C= (PŒûP– ‚Í‚Ÿ` C= (PŒûP*) ‚Í‚Ÿ` C= (PŒûP–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*PŒûP) ‚Í‚Ÿ`
–PŒûP) ‚Í‚Ÿ` (*PŒûP) ‚Í‚Ÿ` (–PŒûP) ‚Í‚Ÿ` *PŒûP) =3 ‚Í‚Ÿ` –PŒûP) =3 ‚Í‚Ÿ` (*PŒûP) =3 ‚Í‚Ÿ` (–PŒûP) =3 ‚Í‚Ÿ` *PŒûP) =‚R ‚Í‚Ÿ` –PŒûP) =‚R ‚Í‚Ÿ` (*PŒûP) =‚R ‚Í‚Ÿ` (–PŒûP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VPŒûPV) (VPŒûPV) ‚Í‚Ÿ` ε= (VPŒûPV) ‚Í‚Ÿ` C= (VPŒûPV) ‚Í‚Ÿ` (VPŒûPV) =3 ‚Í‚Ÿ` (VPŒûPV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(PŒûPV ‚Í‚Ÿ` (PŒûPV) ‚Í‚Ÿ` ε= (PŒûPV ‚Í‚Ÿ` ε= (PŒûPV) ‚Í‚Ÿ` C= (PŒûPV ‚Í‚Ÿ` C= (PŒûPV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VPŒûP) ‚Í‚Ÿ` (VPŒûP) ‚Í‚Ÿ` VPŒûP) =3 ‚Í‚Ÿ` (VPŒûP) =3 ‚Í‚Ÿ` VPŒûP) =‚R ‚Í‚Ÿ` (VPŒûP) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (P¢P) (P¢P) ‚Í‚Ÿ` ε= (P¢P) ‚Í‚Ÿ` C= (P¢P) ‚Í‚Ÿ` (P¢P) =3 ‚Í‚Ÿ` (P¢P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` ( P¢P ) ( P¢P ) ‚Í‚Ÿ` ε= ( P¢P ) ‚Í‚Ÿ` C= ( P¢P ) ‚Í‚Ÿ` ( P¢P ) =3 ‚Í‚Ÿ` ( P¢P ) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P¢P ‚Í‚Ÿ` (P¢P ) ‚Í‚Ÿ` (P¢P@) ‚Í‚Ÿ` ε= (P¢P ‚Í‚Ÿ` ε= (P¢P ) ‚Í‚Ÿ` ε= (P¢P@) ‚Í‚Ÿ` C= (P¢P ‚Í‚Ÿ` C= (P¢P ) ‚Í‚Ÿ` C= (P¢P@) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
P¢P) ‚Í‚Ÿ` ( P¢P) ‚Í‚Ÿ` (@P¢P) ‚Í‚Ÿ` P¢P) =3 ‚Í‚Ÿ` ( P¢P) =3 ‚Í‚Ÿ` (@P¢P) =3 ‚Í‚Ÿ` P¢P) =‚R ‚Í‚Ÿ` ( P¢P) =‚R ‚Í‚Ÿ` (@P¢P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (;P¢P;)
‚Í‚Ÿ` (GP¢PG) (;P¢P;) ‚Í‚Ÿ` (GP¢PG) ‚Í‚Ÿ` ε= (;P¢P;) ‚Í‚Ÿ` ε= (GP¢PG) ‚Í‚Ÿ` C= (;P¢P;) ‚Í‚Ÿ` C= (GP¢PG) ‚Í‚Ÿ` (;P¢P;) =3 ‚Í‚Ÿ` (GP¢PG) =3 ‚Í‚Ÿ` (;P¢P;) =‚R ‚Í‚Ÿ` (GP¢PG) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P¢P; ‚Í‚Ÿ`
(P¢PG ‚Í‚Ÿ` (P¢P;) ‚Í‚Ÿ` (P¢P; ) ‚Í‚Ÿ` (P¢PG) ‚Í‚Ÿ` ε= (P¢P; ‚Í‚Ÿ` ε= (P¢PG ‚Í‚Ÿ` ε= (P¢P;) ‚Í‚Ÿ` ε= (P¢P; ) ‚Í‚Ÿ` ε= (P¢PG) ‚Í‚Ÿ` C= (P¢P; ‚Í‚Ÿ` C= (P¢PG ‚Í‚Ÿ` C= (P¢P;) ‚Í‚Ÿ` C= (P¢P; ) ‚Í‚Ÿ` C= (P¢PG) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
;P¢P) ‚Í‚Ÿ`
GP¢P) ‚Í‚Ÿ` (;P¢P) ‚Í‚Ÿ` ( ;P¢P) ‚Í‚Ÿ` (GP¢P) ‚Í‚Ÿ` ;P¢P) =3 ‚Í‚Ÿ` GP¢P) =3 ‚Í‚Ÿ` (;P¢P) =3 ‚Í‚Ÿ` ( ;P¢P) =3 ‚Í‚Ÿ` (GP¢P) =3 ‚Í‚Ÿ` ;P¢P) =‚R ‚Í‚Ÿ` GP¢P) =‚R ‚Í‚Ÿ` (;P¢P) =‚R ‚Í‚Ÿ` ( ;P¢P) =‚R ‚Í‚Ÿ` (GP¢P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (*P¢P*)
‚Í‚Ÿ` (–P¢P–) (*P¢P*) ‚Í‚Ÿ` (–P¢P–) ‚Í‚Ÿ` ε= (*P¢P*) ‚Í‚Ÿ` ε= (–P¢P–) ‚Í‚Ÿ` C= (*P¢P*) ‚Í‚Ÿ` C= (–P¢P–) ‚Í‚Ÿ` (*P¢P*) =3 ‚Í‚Ÿ` (–P¢P–) =3 ‚Í‚Ÿ` (*P¢P*) =‚R ‚Í‚Ÿ` (–P¢P–) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P¢P* ‚Í‚Ÿ`
(P¢P– ‚Í‚Ÿ` (P¢P*) ‚Í‚Ÿ` (P¢P–) ‚Í‚Ÿ` ε= (P¢P* ‚Í‚Ÿ` ε= (P¢P– ‚Í‚Ÿ` ε= (P¢P*) ‚Í‚Ÿ` ε= (P¢P–) ‚Í‚Ÿ` C= (P¢P* ‚Í‚Ÿ` C= (P¢P– ‚Í‚Ÿ` C= (P¢P*) ‚Í‚Ÿ` C= (P¢P–) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
*P¢P) ‚Í‚Ÿ`
–P¢P) ‚Í‚Ÿ` (*P¢P) ‚Í‚Ÿ` (–P¢P) ‚Í‚Ÿ` *P¢P) =3 ‚Í‚Ÿ` –P¢P) =3 ‚Í‚Ÿ` (*P¢P) =3 ‚Í‚Ÿ` (–P¢P) =3 ‚Í‚Ÿ` *P¢P) =‚R ‚Í‚Ÿ` –P¢P) =‚R ‚Í‚Ÿ` (*P¢P) =‚R ‚Í‚Ÿ` (–P¢P) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i³–Êj |
‚Í‚Ÿ` (VP¢PV) (VP¢PV) ‚Í‚Ÿ` ε= (VP¢PV) ‚Í‚Ÿ` C= (VP¢PV) ‚Í‚Ÿ` (VP¢PV) =3 ‚Í‚Ÿ` (VP¢PV) =‚R ‚Í‚Ÿ` |
‚Í‚Ÿ`i¶Œü‚«j |
(P¢PV ‚Í‚Ÿ` (P¢PV) ‚Í‚Ÿ` ε= (P¢PV ‚Í‚Ÿ` ε= (P¢PV) ‚Í‚Ÿ` C= (P¢PV ‚Í‚Ÿ` C= (P¢PV) ‚Í‚Ÿ` |
‚Í‚Ÿ`i‰EŒü‚«j |
VP¢P) ‚Í‚Ÿ` (VP¢P) ‚Í‚Ÿ` VP¢P) =3 ‚Í‚Ÿ` (VP¢P) =3 ‚Í‚Ÿ` VP¢P) =‚R ‚Í‚Ÿ` (VP¢P) =‚R ‚Í‚Ÿ` |
→ Šç•¶ŽšƒiƒrEƒgƒbƒvƒy[ƒW |