–ß‚éƒ{ƒ^ƒ“
 
 
‚Í‚Ÿ` (PoP)

(PoP) ‚Í‚Ÿ`

ε= (PoP) ‚Í‚Ÿ`

C= (PoP) ‚Í‚Ÿ`

(PoP) =3 ‚Í‚Ÿ`

(PoP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( PoP )

( PoP ) ‚Í‚Ÿ`

ε= ( PoP ) ‚Í‚Ÿ`

C= ( PoP ) ‚Í‚Ÿ`

( PoP ) =3 ‚Í‚Ÿ`

( PoP ) =‚R ‚Í‚Ÿ`
(PoP ‚Í‚Ÿ`

(PoP ) ‚Í‚Ÿ`

(PoP@) ‚Í‚Ÿ`

ε= (PoP ‚Í‚Ÿ`

ε= (PoP ) ‚Í‚Ÿ`

ε= (PoP@) ‚Í‚Ÿ`

C= (PoP ‚Í‚Ÿ`

C= (PoP ) ‚Í‚Ÿ`

C= (PoP@) ‚Í‚Ÿ`
PoP) ‚Í‚Ÿ`

( PoP) ‚Í‚Ÿ`

(@PoP) ‚Í‚Ÿ`

PoP) =3 ‚Í‚Ÿ`
( PoP) =3 ‚Í‚Ÿ`
(@PoP) =3 ‚Í‚Ÿ`

PoP) =‚R ‚Í‚Ÿ`

( PoP) =‚R ‚Í‚Ÿ`

(@PoP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;PoP;)
‚Í‚Ÿ` (GPoPG)

(;PoP;) ‚Í‚Ÿ`

(GPoPG) ‚Í‚Ÿ`

ε= (;PoP;) ‚Í‚Ÿ`
ε= (GPoPG) ‚Í‚Ÿ`

C= (;PoP;) ‚Í‚Ÿ`

C= (GPoPG) ‚Í‚Ÿ`

(;PoP;) =3 ‚Í‚Ÿ`

(GPoPG) =3 ‚Í‚Ÿ`

(;PoP;) =‚R ‚Í‚Ÿ`

(GPoPG) =‚R ‚Í‚Ÿ`
(PoP; ‚Í‚Ÿ`
(PoPG ‚Í‚Ÿ`

(PoP;) ‚Í‚Ÿ`

(PoP; ) ‚Í‚Ÿ`

(PoPG) ‚Í‚Ÿ`

ε= (PoP; ‚Í‚Ÿ`

ε= (PoPG ‚Í‚Ÿ`

ε= (PoP;) ‚Í‚Ÿ`

ε= (PoP; ) ‚Í‚Ÿ`

ε= (PoPG) ‚Í‚Ÿ`

C= (PoP; ‚Í‚Ÿ`

C= (PoPG ‚Í‚Ÿ`

C= (PoP;) ‚Í‚Ÿ`

C= (PoP; ) ‚Í‚Ÿ`

C= (PoPG) ‚Í‚Ÿ`
;PoP) ‚Í‚Ÿ`
GPoP) ‚Í‚Ÿ`

(;PoP) ‚Í‚Ÿ`

( ;PoP) ‚Í‚Ÿ`

(GPoP) ‚Í‚Ÿ`

;PoP) =3 ‚Í‚Ÿ`

GPoP) =3 ‚Í‚Ÿ`
(;PoP) =3 ‚Í‚Ÿ`
( ;PoP) =3 ‚Í‚Ÿ`
(GPoP) =3 ‚Í‚Ÿ`

;PoP) =‚R ‚Í‚Ÿ`

GPoP) =‚R ‚Í‚Ÿ`

(;PoP) =‚R ‚Í‚Ÿ`

( ;PoP) =‚R ‚Í‚Ÿ`

(GPoP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*PoP*)
‚Í‚Ÿ` (–PoP–)

(*PoP*) ‚Í‚Ÿ`

(–PoP–) ‚Í‚Ÿ`

ε= (*PoP*) ‚Í‚Ÿ`
ε= (–PoP–) ‚Í‚Ÿ`

C= (*PoP*) ‚Í‚Ÿ`

C= (–PoP–) ‚Í‚Ÿ`

(*PoP*) =3 ‚Í‚Ÿ`

(–PoP–) =3 ‚Í‚Ÿ`

(*PoP*) =‚R ‚Í‚Ÿ`

(–PoP–) =‚R ‚Í‚Ÿ`
(PoP* ‚Í‚Ÿ`
(PoP– ‚Í‚Ÿ`

(PoP*) ‚Í‚Ÿ`

(PoP–) ‚Í‚Ÿ`

ε= (PoP* ‚Í‚Ÿ`

ε= (PoP– ‚Í‚Ÿ`

ε= (PoP*) ‚Í‚Ÿ`

ε= (PoP–) ‚Í‚Ÿ`

C= (PoP* ‚Í‚Ÿ`

C= (PoP– ‚Í‚Ÿ`

C= (PoP*) ‚Í‚Ÿ`

C= (PoP–) ‚Í‚Ÿ`
*PoP) ‚Í‚Ÿ`
–PoP) ‚Í‚Ÿ`

(*PoP) ‚Í‚Ÿ`

(–PoP) ‚Í‚Ÿ`

*PoP) =3 ‚Í‚Ÿ`
–PoP) =3 ‚Í‚Ÿ`
(*PoP) =3 ‚Í‚Ÿ`
(–PoP) =3 ‚Í‚Ÿ`

*PoP) =‚R ‚Í‚Ÿ`

–PoP) =‚R ‚Í‚Ÿ`

(*PoP) =‚R ‚Í‚Ÿ`

(–PoP) =‚R ‚Í‚Ÿ`
(PoP— ‚Í‚Ÿ`

(PoP—) ‚Í‚Ÿ`

ε= (PoP— ‚Í‚Ÿ`

ε= (PoP—) ‚Í‚Ÿ`

C= (PoP— ‚Í‚Ÿ`

C= (PoP—) ‚Í‚Ÿ`
—PoP) ‚Í‚Ÿ`

(—PoP) ‚Í‚Ÿ`

—PoP) =3 ‚Í‚Ÿ`
(—PoP) =3 ‚Í‚Ÿ`

—PoP) =‚R ‚Í‚Ÿ`

(—PoP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VPoPV)

(VPoPV) ‚Í‚Ÿ`

ε= (VPoPV) ‚Í‚Ÿ`

C= (VPoPV) ‚Í‚Ÿ`

(VPoPV) =3 ‚Í‚Ÿ`

(VPoPV) =‚R ‚Í‚Ÿ`
(PoPV ‚Í‚Ÿ`

(PoPV) ‚Í‚Ÿ`

ε= (PoPV ‚Í‚Ÿ`

ε= (PoPV) ‚Í‚Ÿ`

C= (PoPV ‚Í‚Ÿ`

C= (PoPV) ‚Í‚Ÿ`
VPoP) ‚Í‚Ÿ`

(VPoP) ‚Í‚Ÿ`

VPoP) =3 ‚Í‚Ÿ`
(VPoP) =3 ‚Í‚Ÿ`

VPoP) =‚R ‚Í‚Ÿ`

(VPoP) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (P‚P)

(P‚P) ‚Í‚Ÿ`

ε= (P‚P) ‚Í‚Ÿ`

C= (P‚P) ‚Í‚Ÿ`

(P‚P) =3 ‚Í‚Ÿ`

(P‚P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( P‚P )

( P‚P ) ‚Í‚Ÿ`

ε= ( P‚P ) ‚Í‚Ÿ`

C= ( P‚P ) ‚Í‚Ÿ`

( P‚P ) =3 ‚Í‚Ÿ`

( P‚P ) =‚R ‚Í‚Ÿ`
(P‚P ‚Í‚Ÿ`

(P‚P ) ‚Í‚Ÿ`

(P‚P@) ‚Í‚Ÿ`

ε= (P‚P ‚Í‚Ÿ`

ε= (P‚P ) ‚Í‚Ÿ`

ε= (P‚P@) ‚Í‚Ÿ`

C= (P‚P ‚Í‚Ÿ`

C= (P‚P ) ‚Í‚Ÿ`

C= (P‚P@) ‚Í‚Ÿ`
P‚P) ‚Í‚Ÿ`

( P‚P) ‚Í‚Ÿ`

(@P‚P) ‚Í‚Ÿ`

P‚P) =3 ‚Í‚Ÿ`
( P‚P) =3 ‚Í‚Ÿ`
(@P‚P) =3 ‚Í‚Ÿ`

P‚P) =‚R ‚Í‚Ÿ`

( P‚P) =‚R ‚Í‚Ÿ`

(@P‚P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;P‚P;)
‚Í‚Ÿ` (GP‚PG)

(;P‚P;) ‚Í‚Ÿ`

(GP‚PG) ‚Í‚Ÿ`

ε= (;P‚P;) ‚Í‚Ÿ`
ε= (GP‚PG) ‚Í‚Ÿ`

C= (;P‚P;) ‚Í‚Ÿ`

C= (GP‚PG) ‚Í‚Ÿ`

(;P‚P;) =3 ‚Í‚Ÿ`

(GP‚PG) =3 ‚Í‚Ÿ`

(;P‚P;) =‚R ‚Í‚Ÿ`

(GP‚PG) =‚R ‚Í‚Ÿ`
(P‚P; ‚Í‚Ÿ`
(P‚PG ‚Í‚Ÿ`

(P‚P;) ‚Í‚Ÿ`

(P‚P; ) ‚Í‚Ÿ`

(P‚PG) ‚Í‚Ÿ`

ε= (P‚P; ‚Í‚Ÿ`

ε= (P‚PG ‚Í‚Ÿ`

ε= (P‚P;) ‚Í‚Ÿ`

ε= (P‚P; ) ‚Í‚Ÿ`

ε= (P‚PG) ‚Í‚Ÿ`

C= (P‚P; ‚Í‚Ÿ`

C= (P‚PG ‚Í‚Ÿ`

C= (P‚P;) ‚Í‚Ÿ`

C= (P‚P; ) ‚Í‚Ÿ`

C= (P‚PG) ‚Í‚Ÿ`
;P‚P) ‚Í‚Ÿ`
GP‚P) ‚Í‚Ÿ`

(;P‚P) ‚Í‚Ÿ`

( ;P‚P) ‚Í‚Ÿ`

(GP‚P) ‚Í‚Ÿ`

;P‚P) =3 ‚Í‚Ÿ`

GP‚P) =3 ‚Í‚Ÿ`
(;P‚P) =3 ‚Í‚Ÿ`
( ;P‚P) =3 ‚Í‚Ÿ`
(GP‚P) =3 ‚Í‚Ÿ`

;P‚P) =‚R ‚Í‚Ÿ`

GP‚P) =‚R ‚Í‚Ÿ`

(;P‚P) =‚R ‚Í‚Ÿ`

( ;P‚P) =‚R ‚Í‚Ÿ`

(GP‚P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*P‚P*)
‚Í‚Ÿ` (–P‚P–)

(*P‚P*) ‚Í‚Ÿ`

(–P‚P–) ‚Í‚Ÿ`

ε= (*P‚P*) ‚Í‚Ÿ`
ε= (–P‚P–) ‚Í‚Ÿ`

C= (*P‚P*) ‚Í‚Ÿ`

C= (–P‚P–) ‚Í‚Ÿ`

(*P‚P*) =3 ‚Í‚Ÿ`

(–P‚P–) =3 ‚Í‚Ÿ`

(*P‚P*) =‚R ‚Í‚Ÿ`

(–P‚P–) =‚R ‚Í‚Ÿ`
(P‚P* ‚Í‚Ÿ`
(P‚P– ‚Í‚Ÿ`

(P‚P*) ‚Í‚Ÿ`

(P‚P–) ‚Í‚Ÿ`

ε= (P‚P* ‚Í‚Ÿ`

ε= (P‚P– ‚Í‚Ÿ`

ε= (P‚P*) ‚Í‚Ÿ`

ε= (P‚P–) ‚Í‚Ÿ`

C= (P‚P* ‚Í‚Ÿ`

C= (P‚P– ‚Í‚Ÿ`

C= (P‚P*) ‚Í‚Ÿ`

C= (P‚P–) ‚Í‚Ÿ`
*P‚P) ‚Í‚Ÿ`
–P‚P) ‚Í‚Ÿ`

(*P‚P) ‚Í‚Ÿ`

(–P‚P) ‚Í‚Ÿ`

*P‚P) =3 ‚Í‚Ÿ`
–P‚P) =3 ‚Í‚Ÿ`
(*P‚P) =3 ‚Í‚Ÿ`
(–P‚P) =3 ‚Í‚Ÿ`

*P‚P) =‚R ‚Í‚Ÿ`

–P‚P) =‚R ‚Í‚Ÿ`

(*P‚P) =‚R ‚Í‚Ÿ`

(–P‚P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VP‚PV)

(VP‚PV) ‚Í‚Ÿ`

ε= (VP‚PV) ‚Í‚Ÿ`

C= (VP‚PV) ‚Í‚Ÿ`

(VP‚PV) =3 ‚Í‚Ÿ`

(VP‚PV) =‚R ‚Í‚Ÿ`
(P‚PV ‚Í‚Ÿ`

(P‚PV) ‚Í‚Ÿ`

ε= (P‚PV ‚Í‚Ÿ`

ε= (P‚PV) ‚Í‚Ÿ`

C= (P‚PV ‚Í‚Ÿ`

C= (P‚PV) ‚Í‚Ÿ`
VP‚P) ‚Í‚Ÿ`

(VP‚P) ‚Í‚Ÿ`

VP‚P) =3 ‚Í‚Ÿ`
(VP‚P) =3 ‚Í‚Ÿ`

VP‚P) =‚R ‚Í‚Ÿ`

(VP‚P) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (P0P)

(P0P) ‚Í‚Ÿ`

ε= (P0P) ‚Í‚Ÿ`

C= (P0P) ‚Í‚Ÿ`

(P0P) =3 ‚Í‚Ÿ`

(P0P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( P0P )

( P0P ) ‚Í‚Ÿ`

ε= ( P0P ) ‚Í‚Ÿ`

C= ( P0P ) ‚Í‚Ÿ`

( P0P ) =3 ‚Í‚Ÿ`

( P0P ) =‚R ‚Í‚Ÿ`
(P0P ‚Í‚Ÿ`

(P0P ) ‚Í‚Ÿ`

(P0P@) ‚Í‚Ÿ`

ε= (P0P ‚Í‚Ÿ`

ε= (P0P ) ‚Í‚Ÿ`

ε= (P0P@) ‚Í‚Ÿ`

C= (P0P ‚Í‚Ÿ`

C= (P0P ) ‚Í‚Ÿ`

C= (P0P@) ‚Í‚Ÿ`
P0P) ‚Í‚Ÿ`

( P0P) ‚Í‚Ÿ`

(@P0P) ‚Í‚Ÿ`

P0P) =3 ‚Í‚Ÿ`
( P0P) =3 ‚Í‚Ÿ`
(@P0P) =3 ‚Í‚Ÿ`

P0P) =‚R ‚Í‚Ÿ`

( P0P) =‚R ‚Í‚Ÿ`

(@P0P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;P0P;)
‚Í‚Ÿ` (GP0PG)

(;P0P;) ‚Í‚Ÿ`

(GP0PG) ‚Í‚Ÿ`

ε= (;P0P;) ‚Í‚Ÿ`
ε= (GP0PG) ‚Í‚Ÿ`

C= (;P0P;) ‚Í‚Ÿ`

C= (GP0PG) ‚Í‚Ÿ`

(;P0P;) =3 ‚Í‚Ÿ`

(GP0PG) =3 ‚Í‚Ÿ`

(;P0P;) =‚R ‚Í‚Ÿ`

(GP0PG) =‚R ‚Í‚Ÿ`
(P0P; ‚Í‚Ÿ`
(P0PG ‚Í‚Ÿ`

(P0P;) ‚Í‚Ÿ`

(P0P; ) ‚Í‚Ÿ`

(P0PG) ‚Í‚Ÿ`

ε= (P0P; ‚Í‚Ÿ`

ε= (P0PG ‚Í‚Ÿ`

ε= (P0P;) ‚Í‚Ÿ`

ε= (P0P; ) ‚Í‚Ÿ`

ε= (P0PG) ‚Í‚Ÿ`

C= (P0P; ‚Í‚Ÿ`

C= (P0PG ‚Í‚Ÿ`

C= (P0P;) ‚Í‚Ÿ`

C= (P0P; ) ‚Í‚Ÿ`

C= (P0PG) ‚Í‚Ÿ`
;P0P) ‚Í‚Ÿ`
GP0P) ‚Í‚Ÿ`

(;P0P) ‚Í‚Ÿ`

( ;P0P) ‚Í‚Ÿ`

(GP0P) ‚Í‚Ÿ`

;P0P) =3 ‚Í‚Ÿ`

GP0P) =3 ‚Í‚Ÿ`
(;P0P) =3 ‚Í‚Ÿ`
( ;P0P) =3 ‚Í‚Ÿ`
(GP0P) =3 ‚Í‚Ÿ`

;P0P) =‚R ‚Í‚Ÿ`

GP0P) =‚R ‚Í‚Ÿ`

(;P0P) =‚R ‚Í‚Ÿ`

( ;P0P) =‚R ‚Í‚Ÿ`

(GP0P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*P0P*)
‚Í‚Ÿ` (–P0P–)

(*P0P*) ‚Í‚Ÿ`

(–P0P–) ‚Í‚Ÿ`

ε= (*P0P*) ‚Í‚Ÿ`
ε= (–P0P–) ‚Í‚Ÿ`

C= (*P0P*) ‚Í‚Ÿ`

C= (–P0P–) ‚Í‚Ÿ`

(*P0P*) =3 ‚Í‚Ÿ`

(–P0P–) =3 ‚Í‚Ÿ`

(*P0P*) =‚R ‚Í‚Ÿ`

(–P0P–) =‚R ‚Í‚Ÿ`
(P0P* ‚Í‚Ÿ`
(P0P– ‚Í‚Ÿ`

(P0P*) ‚Í‚Ÿ`

(P0P–) ‚Í‚Ÿ`

ε= (P0P* ‚Í‚Ÿ`

ε= (P0P– ‚Í‚Ÿ`

ε= (P0P*) ‚Í‚Ÿ`

ε= (P0P–) ‚Í‚Ÿ`

C= (P0P* ‚Í‚Ÿ`

C= (P0P– ‚Í‚Ÿ`

C= (P0P*) ‚Í‚Ÿ`

C= (P0P–) ‚Í‚Ÿ`
*P0P) ‚Í‚Ÿ`
–P0P) ‚Í‚Ÿ`

(*P0P) ‚Í‚Ÿ`

(–P0P) ‚Í‚Ÿ`

*P0P) =3 ‚Í‚Ÿ`
–P0P) =3 ‚Í‚Ÿ`
(*P0P) =3 ‚Í‚Ÿ`
(–P0P) =3 ‚Í‚Ÿ`

*P0P) =‚R ‚Í‚Ÿ`

–P0P) =‚R ‚Í‚Ÿ`

(*P0P) =‚R ‚Í‚Ÿ`

(–P0P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VP0PV)

(VP0PV) ‚Í‚Ÿ`

ε= (VP0PV) ‚Í‚Ÿ`

C= (VP0PV) ‚Í‚Ÿ`

(VP0PV) =3 ‚Í‚Ÿ`

(VP0PV) =‚R ‚Í‚Ÿ`
(P0PV ‚Í‚Ÿ`

(P0PV) ‚Í‚Ÿ`

ε= (P0PV ‚Í‚Ÿ`

ε= (P0PV) ‚Í‚Ÿ`

C= (P0PV ‚Í‚Ÿ`

C= (P0PV) ‚Í‚Ÿ`
VP0P) ‚Í‚Ÿ`

(VP0P) ‚Í‚Ÿ`

VP0P) =3 ‚Í‚Ÿ`
(VP0P) =3 ‚Í‚Ÿ`

VP0P) =‚R ‚Í‚Ÿ`

(VP0P) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (P‚OP)

(P‚OP) ‚Í‚Ÿ`

ε= (P‚OP) ‚Í‚Ÿ`

C= (P‚OP) ‚Í‚Ÿ`

(P‚OP) =3 ‚Í‚Ÿ`

(P‚OP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( P‚OP )

( P‚OP ) ‚Í‚Ÿ`

ε= ( P‚OP ) ‚Í‚Ÿ`

C= ( P‚OP ) ‚Í‚Ÿ`

( P‚OP ) =3 ‚Í‚Ÿ`

( P‚OP ) =‚R ‚Í‚Ÿ`
(P‚OP ‚Í‚Ÿ`

(P‚OP ) ‚Í‚Ÿ`

(P‚OP@) ‚Í‚Ÿ`

ε= (P‚OP ‚Í‚Ÿ`

ε= (P‚OP ) ‚Í‚Ÿ`

ε= (P‚OP@) ‚Í‚Ÿ`

C= (P‚OP ‚Í‚Ÿ`

C= (P‚OP ) ‚Í‚Ÿ`

C= (P‚OP@) ‚Í‚Ÿ`
P‚OP) ‚Í‚Ÿ`

( P‚OP) ‚Í‚Ÿ`

(@P‚OP) ‚Í‚Ÿ`

P‚OP) =3 ‚Í‚Ÿ`
( P‚OP) =3 ‚Í‚Ÿ`
(@P‚OP) =3 ‚Í‚Ÿ`

P‚OP) =‚R ‚Í‚Ÿ`

( P‚OP) =‚R ‚Í‚Ÿ`

(@P‚OP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;P‚OP;)
‚Í‚Ÿ` (GP‚OPG)

(;P‚OP;) ‚Í‚Ÿ`

(GP‚OPG) ‚Í‚Ÿ`

ε= (;P‚OP;) ‚Í‚Ÿ`
ε= (GP‚OPG) ‚Í‚Ÿ`

C= (;P‚OP;) ‚Í‚Ÿ`

C= (GP‚OPG) ‚Í‚Ÿ`

(;P‚OP;) =3 ‚Í‚Ÿ`

(GP‚OPG) =3 ‚Í‚Ÿ`

(;P‚OP;) =‚R ‚Í‚Ÿ`

(GP‚OPG) =‚R ‚Í‚Ÿ`
(P‚OP; ‚Í‚Ÿ`
(P‚OPG ‚Í‚Ÿ`

(P‚OP;) ‚Í‚Ÿ`

(P‚OP; ) ‚Í‚Ÿ`

(P‚OPG) ‚Í‚Ÿ`

ε= (P‚OP; ‚Í‚Ÿ`

ε= (P‚OPG ‚Í‚Ÿ`

ε= (P‚OP;) ‚Í‚Ÿ`

ε= (P‚OP; ) ‚Í‚Ÿ`

ε= (P‚OPG) ‚Í‚Ÿ`

C= (P‚OP; ‚Í‚Ÿ`

C= (P‚OPG ‚Í‚Ÿ`

C= (P‚OP;) ‚Í‚Ÿ`

C= (P‚OP; ) ‚Í‚Ÿ`

C= (P‚OPG) ‚Í‚Ÿ`
;P‚OP) ‚Í‚Ÿ`
GP‚OP) ‚Í‚Ÿ`

(;P‚OP) ‚Í‚Ÿ`

( ;P‚OP) ‚Í‚Ÿ`

(GP‚OP) ‚Í‚Ÿ`

;P‚OP) =3 ‚Í‚Ÿ`

GP‚OP) =3 ‚Í‚Ÿ`
(;P‚OP) =3 ‚Í‚Ÿ`
( ;P‚OP) =3 ‚Í‚Ÿ`
(GP‚OP) =3 ‚Í‚Ÿ`

;P‚OP) =‚R ‚Í‚Ÿ`

GP‚OP) =‚R ‚Í‚Ÿ`

(;P‚OP) =‚R ‚Í‚Ÿ`

( ;P‚OP) =‚R ‚Í‚Ÿ`

(GP‚OP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*P‚OP*)
‚Í‚Ÿ` (–P‚OP–)

(*P‚OP*) ‚Í‚Ÿ`

(–P‚OP–) ‚Í‚Ÿ`

ε= (*P‚OP*) ‚Í‚Ÿ`
ε= (–P‚OP–) ‚Í‚Ÿ`

C= (*P‚OP*) ‚Í‚Ÿ`

C= (–P‚OP–) ‚Í‚Ÿ`

(*P‚OP*) =3 ‚Í‚Ÿ`

(–P‚OP–) =3 ‚Í‚Ÿ`

(*P‚OP*) =‚R ‚Í‚Ÿ`

(–P‚OP–) =‚R ‚Í‚Ÿ`
(P‚OP* ‚Í‚Ÿ`
(P‚OP– ‚Í‚Ÿ`

(P‚OP*) ‚Í‚Ÿ`

(P‚OP–) ‚Í‚Ÿ`

ε= (P‚OP* ‚Í‚Ÿ`

ε= (P‚OP– ‚Í‚Ÿ`

ε= (P‚OP*) ‚Í‚Ÿ`

ε= (P‚OP–) ‚Í‚Ÿ`

C= (P‚OP* ‚Í‚Ÿ`

C= (P‚OP– ‚Í‚Ÿ`

C= (P‚OP*) ‚Í‚Ÿ`

C= (P‚OP–) ‚Í‚Ÿ`
*P‚OP) ‚Í‚Ÿ`
–P‚OP) ‚Í‚Ÿ`

(*P‚OP) ‚Í‚Ÿ`

(–P‚OP) ‚Í‚Ÿ`

*P‚OP) =3 ‚Í‚Ÿ`
–P‚OP) =3 ‚Í‚Ÿ`
(*P‚OP) =3 ‚Í‚Ÿ`
(–P‚OP) =3 ‚Í‚Ÿ`

*P‚OP) =‚R ‚Í‚Ÿ`

–P‚OP) =‚R ‚Í‚Ÿ`

(*P‚OP) =‚R ‚Í‚Ÿ`

(–P‚OP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VP‚OPV)

(VP‚OPV) ‚Í‚Ÿ`

ε= (VP‚OPV) ‚Í‚Ÿ`

C= (VP‚OPV) ‚Í‚Ÿ`

(VP‚OPV) =3 ‚Í‚Ÿ`

(VP‚OPV) =‚R ‚Í‚Ÿ`
(P‚OPV ‚Í‚Ÿ`

(P‚OPV) ‚Í‚Ÿ`

ε= (P‚OPV ‚Í‚Ÿ`

ε= (P‚OPV) ‚Í‚Ÿ`

C= (P‚OPV ‚Í‚Ÿ`

C= (P‚OPV) ‚Í‚Ÿ`
VP‚OP) ‚Í‚Ÿ`

(VP‚OP) ‚Í‚Ÿ`

VP‚OP) =3 ‚Í‚Ÿ`
(VP‚OP) =3 ‚Í‚Ÿ`

VP‚OP) =‚R ‚Í‚Ÿ`

(VP‚OP) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (P‚nP)

(P‚nP) ‚Í‚Ÿ`

ε= (P‚nP) ‚Í‚Ÿ`

C= (P‚nP) ‚Í‚Ÿ`

(P‚nP) =3 ‚Í‚Ÿ`

(P‚nP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( P‚nP )

( P‚nP ) ‚Í‚Ÿ`

ε= ( P‚nP ) ‚Í‚Ÿ`

C= ( P‚nP ) ‚Í‚Ÿ`

( P‚nP ) =3 ‚Í‚Ÿ`

( P‚nP ) =‚R ‚Í‚Ÿ`
(P‚nP ‚Í‚Ÿ`

(P‚nP ) ‚Í‚Ÿ`

(P‚nP@) ‚Í‚Ÿ`

ε= (P‚nP ‚Í‚Ÿ`

ε= (P‚nP ) ‚Í‚Ÿ`

ε= (P‚nP@) ‚Í‚Ÿ`

C= (P‚nP ‚Í‚Ÿ`

C= (P‚nP ) ‚Í‚Ÿ`

C= (P‚nP@) ‚Í‚Ÿ`
P‚nP) ‚Í‚Ÿ`

( P‚nP) ‚Í‚Ÿ`

(@P‚nP) ‚Í‚Ÿ`

P‚nP) =3 ‚Í‚Ÿ`
( P‚nP) =3 ‚Í‚Ÿ`
(@P‚nP) =3 ‚Í‚Ÿ`

P‚nP) =‚R ‚Í‚Ÿ`

( P‚nP) =‚R ‚Í‚Ÿ`

(@P‚nP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;P‚nP;)
‚Í‚Ÿ` (GP‚nPG)

(;P‚nP;) ‚Í‚Ÿ`

(GP‚nPG) ‚Í‚Ÿ`

ε= (;P‚nP;) ‚Í‚Ÿ`
ε= (GP‚nPG) ‚Í‚Ÿ`

C= (;P‚nP;) ‚Í‚Ÿ`

C= (GP‚nPG) ‚Í‚Ÿ`

(;P‚nP;) =3 ‚Í‚Ÿ`

(GP‚nPG) =3 ‚Í‚Ÿ`

(;P‚nP;) =‚R ‚Í‚Ÿ`

(GP‚nPG) =‚R ‚Í‚Ÿ`
(P‚nP; ‚Í‚Ÿ`
(P‚nPG ‚Í‚Ÿ`

(P‚nP;) ‚Í‚Ÿ`

(P‚nP; ) ‚Í‚Ÿ`

(P‚nPG) ‚Í‚Ÿ`

ε= (P‚nP; ‚Í‚Ÿ`

ε= (P‚nPG ‚Í‚Ÿ`

ε= (P‚nP;) ‚Í‚Ÿ`

ε= (P‚nP; ) ‚Í‚Ÿ`

ε= (P‚nPG) ‚Í‚Ÿ`

C= (P‚nP; ‚Í‚Ÿ`

C= (P‚nPG ‚Í‚Ÿ`

C= (P‚nP;) ‚Í‚Ÿ`

C= (P‚nP; ) ‚Í‚Ÿ`

C= (P‚nPG) ‚Í‚Ÿ`
;P‚nP) ‚Í‚Ÿ`
GP‚nP) ‚Í‚Ÿ`

(;P‚nP) ‚Í‚Ÿ`

( ;P‚nP) ‚Í‚Ÿ`

(GP‚nP) ‚Í‚Ÿ`

;P‚nP) =3 ‚Í‚Ÿ`

GP‚nP) =3 ‚Í‚Ÿ`
(;P‚nP) =3 ‚Í‚Ÿ`
( ;P‚nP) =3 ‚Í‚Ÿ`
(GP‚nP) =3 ‚Í‚Ÿ`

;P‚nP) =‚R ‚Í‚Ÿ`

GP‚nP) =‚R ‚Í‚Ÿ`

(;P‚nP) =‚R ‚Í‚Ÿ`

( ;P‚nP) =‚R ‚Í‚Ÿ`

(GP‚nP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*P‚nP*)
‚Í‚Ÿ` (–P‚nP–)

(*P‚nP*) ‚Í‚Ÿ`

(–P‚nP–) ‚Í‚Ÿ`

ε= (*P‚nP*) ‚Í‚Ÿ`
ε= (–P‚nP–) ‚Í‚Ÿ`

C= (*P‚nP*) ‚Í‚Ÿ`

C= (–P‚nP–) ‚Í‚Ÿ`

(*P‚nP*) =3 ‚Í‚Ÿ`

(–P‚nP–) =3 ‚Í‚Ÿ`

(*P‚nP*) =‚R ‚Í‚Ÿ`

(–P‚nP–) =‚R ‚Í‚Ÿ`
(P‚nP* ‚Í‚Ÿ`
(P‚nP– ‚Í‚Ÿ`

(P‚nP*) ‚Í‚Ÿ`

(P‚nP–) ‚Í‚Ÿ`

ε= (P‚nP* ‚Í‚Ÿ`

ε= (P‚nP– ‚Í‚Ÿ`

ε= (P‚nP*) ‚Í‚Ÿ`

ε= (P‚nP–) ‚Í‚Ÿ`

C= (P‚nP* ‚Í‚Ÿ`

C= (P‚nP– ‚Í‚Ÿ`

C= (P‚nP*) ‚Í‚Ÿ`

C= (P‚nP–) ‚Í‚Ÿ`
*P‚nP) ‚Í‚Ÿ`
–P‚nP) ‚Í‚Ÿ`

(*P‚nP) ‚Í‚Ÿ`

(–P‚nP) ‚Í‚Ÿ`

*P‚nP) =3 ‚Í‚Ÿ`
–P‚nP) =3 ‚Í‚Ÿ`
(*P‚nP) =3 ‚Í‚Ÿ`
(–P‚nP) =3 ‚Í‚Ÿ`

*P‚nP) =‚R ‚Í‚Ÿ`

–P‚nP) =‚R ‚Í‚Ÿ`

(*P‚nP) =‚R ‚Í‚Ÿ`

(–P‚nP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VP‚nPV)

(VP‚nPV) ‚Í‚Ÿ`

ε= (VP‚nPV) ‚Í‚Ÿ`

C= (VP‚nPV) ‚Í‚Ÿ`

(VP‚nPV) =3 ‚Í‚Ÿ`

(VP‚nPV) =‚R ‚Í‚Ÿ`
(P‚nPV ‚Í‚Ÿ`

(P‚nPV) ‚Í‚Ÿ`

ε= (P‚nPV ‚Í‚Ÿ`

ε= (P‚nPV) ‚Í‚Ÿ`

C= (P‚nPV ‚Í‚Ÿ`

C= (P‚nPV) ‚Í‚Ÿ`
VP‚nP) ‚Í‚Ÿ`

(VP‚nP) ‚Í‚Ÿ`

VP‚nP) =3 ‚Í‚Ÿ`
(VP‚nP) =3 ‚Í‚Ÿ`

VP‚nP) =‚R ‚Í‚Ÿ`

(VP‚nP) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (P∇P)

(P∇P) ‚Í‚Ÿ`

ε= (P∇P) ‚Í‚Ÿ`

C= (P∇P) ‚Í‚Ÿ`

(P∇P) =3 ‚Í‚Ÿ`

(P∇P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( P∇P )

( P∇P ) ‚Í‚Ÿ`

ε= ( P∇P ) ‚Í‚Ÿ`

C= ( P∇P ) ‚Í‚Ÿ`

( P∇P ) =3 ‚Í‚Ÿ`

( P∇P ) =‚R ‚Í‚Ÿ`
(P∇P ‚Í‚Ÿ`

(P∇P ) ‚Í‚Ÿ`

(P∇P@) ‚Í‚Ÿ`

ε= (P∇P ‚Í‚Ÿ`

ε= (P∇P ) ‚Í‚Ÿ`

ε= (P∇P@) ‚Í‚Ÿ`

C= (P∇P ‚Í‚Ÿ`

C= (P∇P ) ‚Í‚Ÿ`

C= (P∇P@) ‚Í‚Ÿ`
P∇P) ‚Í‚Ÿ`

( P∇P) ‚Í‚Ÿ`

(@P∇P) ‚Í‚Ÿ`

P∇P) =3 ‚Í‚Ÿ`
( P∇P) =3 ‚Í‚Ÿ`
(@P∇P) =3 ‚Í‚Ÿ`

P∇P) =‚R ‚Í‚Ÿ`

( P∇P) =‚R ‚Í‚Ÿ`

(@P∇P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;P∇P;)
‚Í‚Ÿ` (GP∇PG)

(;P∇P;) ‚Í‚Ÿ`

(GP∇PG) ‚Í‚Ÿ`

ε= (;P∇P;) ‚Í‚Ÿ`
ε= (GP∇PG) ‚Í‚Ÿ`

C= (;P∇P;) ‚Í‚Ÿ`

C= (GP∇PG) ‚Í‚Ÿ`

(;P∇P;) =3 ‚Í‚Ÿ`

(GP∇PG) =3 ‚Í‚Ÿ`

(;P∇P;) =‚R ‚Í‚Ÿ`

(GP∇PG) =‚R ‚Í‚Ÿ`
(P∇P; ‚Í‚Ÿ`
(P∇PG ‚Í‚Ÿ`

(P∇P;) ‚Í‚Ÿ`

(P∇P; ) ‚Í‚Ÿ`

(P∇PG) ‚Í‚Ÿ`

ε= (P∇P; ‚Í‚Ÿ`

ε= (P∇PG ‚Í‚Ÿ`

ε= (P∇P;) ‚Í‚Ÿ`

ε= (P∇P; ) ‚Í‚Ÿ`

ε= (P∇PG) ‚Í‚Ÿ`

C= (P∇P; ‚Í‚Ÿ`

C= (P∇PG ‚Í‚Ÿ`

C= (P∇P;) ‚Í‚Ÿ`

C= (P∇P; ) ‚Í‚Ÿ`

C= (P∇PG) ‚Í‚Ÿ`
;P∇P) ‚Í‚Ÿ`
GP∇P) ‚Í‚Ÿ`

(;P∇P) ‚Í‚Ÿ`

( ;P∇P) ‚Í‚Ÿ`

(GP∇P) ‚Í‚Ÿ`

;P∇P) =3 ‚Í‚Ÿ`

GP∇P) =3 ‚Í‚Ÿ`
(;P∇P) =3 ‚Í‚Ÿ`
( ;P∇P) =3 ‚Í‚Ÿ`
(GP∇P) =3 ‚Í‚Ÿ`

;P∇P) =‚R ‚Í‚Ÿ`

GP∇P) =‚R ‚Í‚Ÿ`

(;P∇P) =‚R ‚Í‚Ÿ`

( ;P∇P) =‚R ‚Í‚Ÿ`

(GP∇P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*P∇P*)
‚Í‚Ÿ` (–P∇P–)

(*P∇P*) ‚Í‚Ÿ`

(–P∇P–) ‚Í‚Ÿ`

ε= (*P∇P*) ‚Í‚Ÿ`
ε= (–P∇P–) ‚Í‚Ÿ`

C= (*P∇P*) ‚Í‚Ÿ`

C= (–P∇P–) ‚Í‚Ÿ`

(*P∇P*) =3 ‚Í‚Ÿ`

(–P∇P–) =3 ‚Í‚Ÿ`

(*P∇P*) =‚R ‚Í‚Ÿ`

(–P∇P–) =‚R ‚Í‚Ÿ`
(P∇P* ‚Í‚Ÿ`
(P∇P– ‚Í‚Ÿ`

(P∇P*) ‚Í‚Ÿ`

(P∇P–) ‚Í‚Ÿ`

ε= (P∇P* ‚Í‚Ÿ`

ε= (P∇P– ‚Í‚Ÿ`

ε= (P∇P*) ‚Í‚Ÿ`

ε= (P∇P–) ‚Í‚Ÿ`

C= (P∇P* ‚Í‚Ÿ`

C= (P∇P– ‚Í‚Ÿ`

C= (P∇P*) ‚Í‚Ÿ`

C= (P∇P–) ‚Í‚Ÿ`
*P∇P) ‚Í‚Ÿ`
–P∇P) ‚Í‚Ÿ`

(*P∇P) ‚Í‚Ÿ`

(–P∇P) ‚Í‚Ÿ`

*P∇P) =3 ‚Í‚Ÿ`
–P∇P) =3 ‚Í‚Ÿ`
(*P∇P) =3 ‚Í‚Ÿ`
(–P∇P) =3 ‚Í‚Ÿ`

*P∇P) =‚R ‚Í‚Ÿ`

–P∇P) =‚R ‚Í‚Ÿ`

(*P∇P) =‚R ‚Í‚Ÿ`

(–P∇P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VP∇PV)

(VP∇PV) ‚Í‚Ÿ`

ε= (VP∇PV) ‚Í‚Ÿ`

C= (VP∇PV) ‚Í‚Ÿ`

(VP∇PV) =3 ‚Í‚Ÿ`

(VP∇PV) =‚R ‚Í‚Ÿ`
(P∇PV ‚Í‚Ÿ`

(P∇PV) ‚Í‚Ÿ`

ε= (P∇PV ‚Í‚Ÿ`

ε= (P∇PV) ‚Í‚Ÿ`

C= (P∇PV ‚Í‚Ÿ`

C= (P∇PV) ‚Í‚Ÿ`
VP∇P) ‚Í‚Ÿ`

(VP∇P) ‚Í‚Ÿ`

VP∇P) =3 ‚Í‚Ÿ`
(VP∇P) =3 ‚Í‚Ÿ`

VP∇P) =‚R ‚Í‚Ÿ`

(VP∇P) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (P¤P)

(P¤P) ‚Í‚Ÿ`

ε= (P¤P) ‚Í‚Ÿ`

C= (P¤P) ‚Í‚Ÿ`

(P¤P) =3 ‚Í‚Ÿ`

(P¤P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( P¤P )

( P¤P ) ‚Í‚Ÿ`

ε= ( P¤P ) ‚Í‚Ÿ`

C= ( P¤P ) ‚Í‚Ÿ`

( P¤P ) =3 ‚Í‚Ÿ`

( P¤P ) =‚R ‚Í‚Ÿ`
(P¤P ‚Í‚Ÿ`

(P¤P ) ‚Í‚Ÿ`

(P¤P@) ‚Í‚Ÿ`

ε= (P¤P ‚Í‚Ÿ`

ε= (P¤P ) ‚Í‚Ÿ`

ε= (P¤P@) ‚Í‚Ÿ`

C= (P¤P ‚Í‚Ÿ`

C= (P¤P ) ‚Í‚Ÿ`

C= (P¤P@) ‚Í‚Ÿ`
P¤P) ‚Í‚Ÿ`

( P¤P) ‚Í‚Ÿ`

(@P¤P) ‚Í‚Ÿ`

P¤P) =3 ‚Í‚Ÿ`
( P¤P) =3 ‚Í‚Ÿ`
(@P¤P) =3 ‚Í‚Ÿ`

P¤P) =‚R ‚Í‚Ÿ`

( P¤P) =‚R ‚Í‚Ÿ`

(@P¤P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;P¤P;)
‚Í‚Ÿ` (GP¤PG)

(;P¤P;) ‚Í‚Ÿ`

(GP¤PG) ‚Í‚Ÿ`

ε= (;P¤P;) ‚Í‚Ÿ`
ε= (GP¤PG) ‚Í‚Ÿ`

C= (;P¤P;) ‚Í‚Ÿ`

C= (GP¤PG) ‚Í‚Ÿ`

(;P¤P;) =3 ‚Í‚Ÿ`

(GP¤PG) =3 ‚Í‚Ÿ`

(;P¤P;) =‚R ‚Í‚Ÿ`

(GP¤PG) =‚R ‚Í‚Ÿ`
(P¤P; ‚Í‚Ÿ`
(P¤PG ‚Í‚Ÿ`

(P¤P;) ‚Í‚Ÿ`

(P¤P; ) ‚Í‚Ÿ`

(P¤PG) ‚Í‚Ÿ`

ε= (P¤P; ‚Í‚Ÿ`

ε= (P¤PG ‚Í‚Ÿ`

ε= (P¤P;) ‚Í‚Ÿ`

ε= (P¤P; ) ‚Í‚Ÿ`

ε= (P¤PG) ‚Í‚Ÿ`

C= (P¤P; ‚Í‚Ÿ`

C= (P¤PG ‚Í‚Ÿ`

C= (P¤P;) ‚Í‚Ÿ`

C= (P¤P; ) ‚Í‚Ÿ`

C= (P¤PG) ‚Í‚Ÿ`
;P¤P) ‚Í‚Ÿ`
GP¤P) ‚Í‚Ÿ`

(;P¤P) ‚Í‚Ÿ`

( ;P¤P) ‚Í‚Ÿ`

(GP¤P) ‚Í‚Ÿ`

;P¤P) =3 ‚Í‚Ÿ`

GP¤P) =3 ‚Í‚Ÿ`
(;P¤P) =3 ‚Í‚Ÿ`
( ;P¤P) =3 ‚Í‚Ÿ`
(GP¤P) =3 ‚Í‚Ÿ`

;P¤P) =‚R ‚Í‚Ÿ`

GP¤P) =‚R ‚Í‚Ÿ`

(;P¤P) =‚R ‚Í‚Ÿ`

( ;P¤P) =‚R ‚Í‚Ÿ`

(GP¤P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*P¤P*)
‚Í‚Ÿ` (–P¤P–)

(*P¤P*) ‚Í‚Ÿ`

(–P¤P–) ‚Í‚Ÿ`

ε= (*P¤P*) ‚Í‚Ÿ`
ε= (–P¤P–) ‚Í‚Ÿ`

C= (*P¤P*) ‚Í‚Ÿ`

C= (–P¤P–) ‚Í‚Ÿ`

(*P¤P*) =3 ‚Í‚Ÿ`

(–P¤P–) =3 ‚Í‚Ÿ`

(*P¤P*) =‚R ‚Í‚Ÿ`

(–P¤P–) =‚R ‚Í‚Ÿ`
(P¤P* ‚Í‚Ÿ`
(P¤P– ‚Í‚Ÿ`

(P¤P*) ‚Í‚Ÿ`

(P¤P–) ‚Í‚Ÿ`

ε= (P¤P* ‚Í‚Ÿ`

ε= (P¤P– ‚Í‚Ÿ`

ε= (P¤P*) ‚Í‚Ÿ`

ε= (P¤P–) ‚Í‚Ÿ`

C= (P¤P* ‚Í‚Ÿ`

C= (P¤P– ‚Í‚Ÿ`

C= (P¤P*) ‚Í‚Ÿ`

C= (P¤P–) ‚Í‚Ÿ`
*P¤P) ‚Í‚Ÿ`
–P¤P) ‚Í‚Ÿ`

(*P¤P) ‚Í‚Ÿ`

(–P¤P) ‚Í‚Ÿ`

*P¤P) =3 ‚Í‚Ÿ`
–P¤P) =3 ‚Í‚Ÿ`
(*P¤P) =3 ‚Í‚Ÿ`
(–P¤P) =3 ‚Í‚Ÿ`

*P¤P) =‚R ‚Í‚Ÿ`

–P¤P) =‚R ‚Í‚Ÿ`

(*P¤P) =‚R ‚Í‚Ÿ`

(–P¤P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VP¤PV)

(VP¤PV) ‚Í‚Ÿ`

ε= (VP¤PV) ‚Í‚Ÿ`

C= (VP¤PV) ‚Í‚Ÿ`

(VP¤PV) =3 ‚Í‚Ÿ`

(VP¤PV) =‚R ‚Í‚Ÿ`
(P¤PV ‚Í‚Ÿ`

(P¤PV) ‚Í‚Ÿ`

ε= (P¤PV ‚Í‚Ÿ`

ε= (P¤PV) ‚Í‚Ÿ`

C= (P¤PV ‚Í‚Ÿ`

C= (P¤PV) ‚Í‚Ÿ`
VP¤P) ‚Í‚Ÿ`

(VP¤P) ‚Í‚Ÿ`

VP¤P) =3 ‚Í‚Ÿ`
(VP¤P) =3 ‚Í‚Ÿ`

VP¤P) =‚R ‚Í‚Ÿ`

(VP¤P) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (P∀P)

(P∀P) ‚Í‚Ÿ`

ε= (P∀P) ‚Í‚Ÿ`

C= (P∀P) ‚Í‚Ÿ`

(P∀P) =3 ‚Í‚Ÿ`

(P∀P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( P∀P )

( P∀P ) ‚Í‚Ÿ`

ε= ( P∀P ) ‚Í‚Ÿ`

C= ( P∀P ) ‚Í‚Ÿ`

( P∀P ) =3 ‚Í‚Ÿ`

( P∀P ) =‚R ‚Í‚Ÿ`
(P∀P ‚Í‚Ÿ`

(P∀P ) ‚Í‚Ÿ`

(P∀P@) ‚Í‚Ÿ`

ε= (P∀P ‚Í‚Ÿ`

ε= (P∀P ) ‚Í‚Ÿ`

ε= (P∀P@) ‚Í‚Ÿ`

C= (P∀P ‚Í‚Ÿ`

C= (P∀P ) ‚Í‚Ÿ`

C= (P∀P@) ‚Í‚Ÿ`
P∀P) ‚Í‚Ÿ`

( P∀P) ‚Í‚Ÿ`

(@P∀P) ‚Í‚Ÿ`

P∀P) =3 ‚Í‚Ÿ`
( P∀P) =3 ‚Í‚Ÿ`
(@P∀P) =3 ‚Í‚Ÿ`

P∀P) =‚R ‚Í‚Ÿ`

( P∀P) =‚R ‚Í‚Ÿ`

(@P∀P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;P∀P;)
‚Í‚Ÿ` (GP∀PG)

(;P∀P;) ‚Í‚Ÿ`

(GP∀PG) ‚Í‚Ÿ`

ε= (;P∀P;) ‚Í‚Ÿ`
ε= (GP∀PG) ‚Í‚Ÿ`

C= (;P∀P;) ‚Í‚Ÿ`

C= (GP∀PG) ‚Í‚Ÿ`

(;P∀P;) =3 ‚Í‚Ÿ`

(GP∀PG) =3 ‚Í‚Ÿ`

(;P∀P;) =‚R ‚Í‚Ÿ`

(GP∀PG) =‚R ‚Í‚Ÿ`
(P∀P; ‚Í‚Ÿ`
(P∀PG ‚Í‚Ÿ`

(P∀P;) ‚Í‚Ÿ`

(P∀P; ) ‚Í‚Ÿ`

(P∀PG) ‚Í‚Ÿ`

ε= (P∀P; ‚Í‚Ÿ`

ε= (P∀PG ‚Í‚Ÿ`

ε= (P∀P;) ‚Í‚Ÿ`

ε= (P∀P; ) ‚Í‚Ÿ`

ε= (P∀PG) ‚Í‚Ÿ`

C= (P∀P; ‚Í‚Ÿ`

C= (P∀PG ‚Í‚Ÿ`

C= (P∀P;) ‚Í‚Ÿ`

C= (P∀P; ) ‚Í‚Ÿ`

C= (P∀PG) ‚Í‚Ÿ`
;P∀P) ‚Í‚Ÿ`
GP∀P) ‚Í‚Ÿ`

(;P∀P) ‚Í‚Ÿ`

( ;P∀P) ‚Í‚Ÿ`

(GP∀P) ‚Í‚Ÿ`

;P∀P) =3 ‚Í‚Ÿ`

GP∀P) =3 ‚Í‚Ÿ`
(;P∀P) =3 ‚Í‚Ÿ`
( ;P∀P) =3 ‚Í‚Ÿ`
(GP∀P) =3 ‚Í‚Ÿ`

;P∀P) =‚R ‚Í‚Ÿ`

GP∀P) =‚R ‚Í‚Ÿ`

(;P∀P) =‚R ‚Í‚Ÿ`

( ;P∀P) =‚R ‚Í‚Ÿ`

(GP∀P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*P∀P*)
‚Í‚Ÿ` (–P∀P–)

(*P∀P*) ‚Í‚Ÿ`

(–P∀P–) ‚Í‚Ÿ`

ε= (*P∀P*) ‚Í‚Ÿ`
ε= (–P∀P–) ‚Í‚Ÿ`

C= (*P∀P*) ‚Í‚Ÿ`

C= (–P∀P–) ‚Í‚Ÿ`

(*P∀P*) =3 ‚Í‚Ÿ`

(–P∀P–) =3 ‚Í‚Ÿ`

(*P∀P*) =‚R ‚Í‚Ÿ`

(–P∀P–) =‚R ‚Í‚Ÿ`
(P∀P* ‚Í‚Ÿ`
(P∀P– ‚Í‚Ÿ`

(P∀P*) ‚Í‚Ÿ`

(P∀P–) ‚Í‚Ÿ`

ε= (P∀P* ‚Í‚Ÿ`

ε= (P∀P– ‚Í‚Ÿ`

ε= (P∀P*) ‚Í‚Ÿ`

ε= (P∀P–) ‚Í‚Ÿ`

C= (P∀P* ‚Í‚Ÿ`

C= (P∀P– ‚Í‚Ÿ`

C= (P∀P*) ‚Í‚Ÿ`

C= (P∀P–) ‚Í‚Ÿ`
*P∀P) ‚Í‚Ÿ`
–P∀P) ‚Í‚Ÿ`

(*P∀P) ‚Í‚Ÿ`

(–P∀P) ‚Í‚Ÿ`

*P∀P) =3 ‚Í‚Ÿ`
–P∀P) =3 ‚Í‚Ÿ`
(*P∀P) =3 ‚Í‚Ÿ`
(–P∀P) =3 ‚Í‚Ÿ`

*P∀P) =‚R ‚Í‚Ÿ`

–P∀P) =‚R ‚Í‚Ÿ`

(*P∀P) =‚R ‚Í‚Ÿ`

(–P∀P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VP∀PV)

(VP∀PV) ‚Í‚Ÿ`

ε= (VP∀PV) ‚Í‚Ÿ`

C= (VP∀PV) ‚Í‚Ÿ`

(VP∀PV) =3 ‚Í‚Ÿ`

(VP∀PV) =‚R ‚Í‚Ÿ`
(P∀PV ‚Í‚Ÿ`

(P∀PV) ‚Í‚Ÿ`

ε= (P∀PV ‚Í‚Ÿ`

ε= (P∀PV) ‚Í‚Ÿ`

C= (P∀PV ‚Í‚Ÿ`

C= (P∀PV) ‚Í‚Ÿ`
VP∀P) ‚Í‚Ÿ`

(VP∀P) ‚Í‚Ÿ`

VP∀P) =3 ‚Í‚Ÿ`
(VP∀P) =3 ‚Í‚Ÿ`

VP∀P) =‚R ‚Í‚Ÿ`

(VP∀P) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (PžP)

(PžP) ‚Í‚Ÿ`

ε= (PžP) ‚Í‚Ÿ`

C= (PžP) ‚Í‚Ÿ`

(PžP) =3 ‚Í‚Ÿ`

(PžP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( PžP )

( PžP ) ‚Í‚Ÿ`

ε= ( PžP ) ‚Í‚Ÿ`

C= ( PžP ) ‚Í‚Ÿ`

( PžP ) =3 ‚Í‚Ÿ`

( PžP ) =‚R ‚Í‚Ÿ`
(PžP ‚Í‚Ÿ`

(PžP ) ‚Í‚Ÿ`

(PžP@) ‚Í‚Ÿ`

ε= (PžP ‚Í‚Ÿ`

ε= (PžP ) ‚Í‚Ÿ`

ε= (PžP@) ‚Í‚Ÿ`

C= (PžP ‚Í‚Ÿ`

C= (PžP ) ‚Í‚Ÿ`

C= (PžP@) ‚Í‚Ÿ`
PžP) ‚Í‚Ÿ`

( PžP) ‚Í‚Ÿ`

(@PžP) ‚Í‚Ÿ`

PžP) =3 ‚Í‚Ÿ`
( PžP) =3 ‚Í‚Ÿ`
(@PžP) =3 ‚Í‚Ÿ`

PžP) =‚R ‚Í‚Ÿ`

( PžP) =‚R ‚Í‚Ÿ`

(@PžP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;PžP;)
‚Í‚Ÿ` (GPžPG)

(;PžP;) ‚Í‚Ÿ`

(GPžPG) ‚Í‚Ÿ`

ε= (;PžP;) ‚Í‚Ÿ`
ε= (GPžPG) ‚Í‚Ÿ`

C= (;PžP;) ‚Í‚Ÿ`

C= (GPžPG) ‚Í‚Ÿ`

(;PžP;) =3 ‚Í‚Ÿ`

(GPžPG) =3 ‚Í‚Ÿ`

(;PžP;) =‚R ‚Í‚Ÿ`

(GPžPG) =‚R ‚Í‚Ÿ`
(PžP; ‚Í‚Ÿ`
(PžPG ‚Í‚Ÿ`

(PžP;) ‚Í‚Ÿ`

(PžP; ) ‚Í‚Ÿ`

(PžPG) ‚Í‚Ÿ`

ε= (PžP; ‚Í‚Ÿ`

ε= (PžPG ‚Í‚Ÿ`

ε= (PžP;) ‚Í‚Ÿ`

ε= (PžP; ) ‚Í‚Ÿ`

ε= (PžPG) ‚Í‚Ÿ`

C= (PžP; ‚Í‚Ÿ`

C= (PžPG ‚Í‚Ÿ`

C= (PžP;) ‚Í‚Ÿ`

C= (PžP; ) ‚Í‚Ÿ`

C= (PžPG) ‚Í‚Ÿ`
;PžP) ‚Í‚Ÿ`
GPžP) ‚Í‚Ÿ`

(;PžP) ‚Í‚Ÿ`

( ;PžP) ‚Í‚Ÿ`

(GPžP) ‚Í‚Ÿ`

;PžP) =3 ‚Í‚Ÿ`

GPžP) =3 ‚Í‚Ÿ`
(;PžP) =3 ‚Í‚Ÿ`
( ;PžP) =3 ‚Í‚Ÿ`
(GPžP) =3 ‚Í‚Ÿ`

;PžP) =‚R ‚Í‚Ÿ`

GPžP) =‚R ‚Í‚Ÿ`

(;PžP) =‚R ‚Í‚Ÿ`

( ;PžP) =‚R ‚Í‚Ÿ`

(GPžP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*PžP*)
‚Í‚Ÿ` (–PžP–)

(*PžP*) ‚Í‚Ÿ`

(–PžP–) ‚Í‚Ÿ`

ε= (*PžP*) ‚Í‚Ÿ`
ε= (–PžP–) ‚Í‚Ÿ`

C= (*PžP*) ‚Í‚Ÿ`

C= (–PžP–) ‚Í‚Ÿ`

(*PžP*) =3 ‚Í‚Ÿ`

(–PžP–) =3 ‚Í‚Ÿ`

(*PžP*) =‚R ‚Í‚Ÿ`

(–PžP–) =‚R ‚Í‚Ÿ`
(PžP* ‚Í‚Ÿ`
(PžP– ‚Í‚Ÿ`

(PžP*) ‚Í‚Ÿ`

(PžP–) ‚Í‚Ÿ`

ε= (PžP* ‚Í‚Ÿ`

ε= (PžP– ‚Í‚Ÿ`

ε= (PžP*) ‚Í‚Ÿ`

ε= (PžP–) ‚Í‚Ÿ`

C= (PžP* ‚Í‚Ÿ`

C= (PžP– ‚Í‚Ÿ`

C= (PžP*) ‚Í‚Ÿ`

C= (PžP–) ‚Í‚Ÿ`
*PžP) ‚Í‚Ÿ`
–PžP) ‚Í‚Ÿ`

(*PžP) ‚Í‚Ÿ`

(–PžP) ‚Í‚Ÿ`

*PžP) =3 ‚Í‚Ÿ`
–PžP) =3 ‚Í‚Ÿ`
(*PžP) =3 ‚Í‚Ÿ`
(–PžP) =3 ‚Í‚Ÿ`

*PžP) =‚R ‚Í‚Ÿ`

–PžP) =‚R ‚Í‚Ÿ`

(*PžP) =‚R ‚Í‚Ÿ`

(–PžP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VPžPV)

(VPžPV) ‚Í‚Ÿ`

ε= (VPžPV) ‚Í‚Ÿ`

C= (VPžPV) ‚Í‚Ÿ`

(VPžPV) =3 ‚Í‚Ÿ`

(VPžPV) =‚R ‚Í‚Ÿ`
(PžPV ‚Í‚Ÿ`

(PžPV) ‚Í‚Ÿ`

ε= (PžPV ‚Í‚Ÿ`

ε= (PžPV) ‚Í‚Ÿ`

C= (PžPV ‚Í‚Ÿ`

C= (PžPV) ‚Í‚Ÿ`
VPžP) ‚Í‚Ÿ`

(VPžP) ‚Í‚Ÿ`

VPžP) =3 ‚Í‚Ÿ`
(VPžP) =3 ‚Í‚Ÿ`

VPžP) =‚R ‚Í‚Ÿ`

(VPžP) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (PƒP)

(PƒP) ‚Í‚Ÿ`

ε= (PƒP) ‚Í‚Ÿ`

C= (PƒP) ‚Í‚Ÿ`

(PƒP) =3 ‚Í‚Ÿ`

(PƒP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( PƒP )

( PƒP ) ‚Í‚Ÿ`

ε= ( PƒP ) ‚Í‚Ÿ`

C= ( PƒP ) ‚Í‚Ÿ`

( PƒP ) =3 ‚Í‚Ÿ`

( PƒP ) =‚R ‚Í‚Ÿ`
(PƒP ‚Í‚Ÿ`

(PƒP ) ‚Í‚Ÿ`

(PƒP@) ‚Í‚Ÿ`

ε= (PƒP ‚Í‚Ÿ`

ε= (PƒP ) ‚Í‚Ÿ`

ε= (PƒP@) ‚Í‚Ÿ`

C= (PƒP ‚Í‚Ÿ`

C= (PƒP ) ‚Í‚Ÿ`

C= (PƒP@) ‚Í‚Ÿ`
PƒP) ‚Í‚Ÿ`

( PƒP) ‚Í‚Ÿ`

(@PƒP) ‚Í‚Ÿ`

PƒP) =3 ‚Í‚Ÿ`
( PƒP) =3 ‚Í‚Ÿ`
(@PƒP) =3 ‚Í‚Ÿ`

PƒP) =‚R ‚Í‚Ÿ`

( PƒP) =‚R ‚Í‚Ÿ`

(@PƒP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;PƒP;)
‚Í‚Ÿ` (GPƒPG)

(;PƒP;) ‚Í‚Ÿ`

(GPƒPG) ‚Í‚Ÿ`

ε= (;PƒP;) ‚Í‚Ÿ`
ε= (GPƒPG) ‚Í‚Ÿ`

C= (;PƒP;) ‚Í‚Ÿ`

C= (GPƒPG) ‚Í‚Ÿ`

(;PƒP;) =3 ‚Í‚Ÿ`

(GPƒPG) =3 ‚Í‚Ÿ`

(;PƒP;) =‚R ‚Í‚Ÿ`

(GPƒPG) =‚R ‚Í‚Ÿ`
(PƒP; ‚Í‚Ÿ`
(PƒPG ‚Í‚Ÿ`

(PƒP;) ‚Í‚Ÿ`

(PƒP; ) ‚Í‚Ÿ`

(PƒPG) ‚Í‚Ÿ`

ε= (PƒP; ‚Í‚Ÿ`

ε= (PƒPG ‚Í‚Ÿ`

ε= (PƒP;) ‚Í‚Ÿ`

ε= (PƒP; ) ‚Í‚Ÿ`

ε= (PƒPG) ‚Í‚Ÿ`

C= (PƒP; ‚Í‚Ÿ`

C= (PƒPG ‚Í‚Ÿ`

C= (PƒP;) ‚Í‚Ÿ`

C= (PƒP; ) ‚Í‚Ÿ`

C= (PƒPG) ‚Í‚Ÿ`
;PƒP) ‚Í‚Ÿ`
GPƒP) ‚Í‚Ÿ`

(;PƒP) ‚Í‚Ÿ`

( ;PƒP) ‚Í‚Ÿ`

(GPƒP) ‚Í‚Ÿ`

;PƒP) =3 ‚Í‚Ÿ`

GPƒP) =3 ‚Í‚Ÿ`
(;PƒP) =3 ‚Í‚Ÿ`
( ;PƒP) =3 ‚Í‚Ÿ`
(GPƒP) =3 ‚Í‚Ÿ`

;PƒP) =‚R ‚Í‚Ÿ`

GPƒP) =‚R ‚Í‚Ÿ`

(;PƒP) =‚R ‚Í‚Ÿ`

( ;PƒP) =‚R ‚Í‚Ÿ`

(GPƒP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*PƒP*)
‚Í‚Ÿ` (–PƒP–)

(*PƒP*) ‚Í‚Ÿ`

(–PƒP–) ‚Í‚Ÿ`

ε= (*PƒP*) ‚Í‚Ÿ`
ε= (–PƒP–) ‚Í‚Ÿ`

C= (*PƒP*) ‚Í‚Ÿ`

C= (–PƒP–) ‚Í‚Ÿ`

(*PƒP*) =3 ‚Í‚Ÿ`

(–PƒP–) =3 ‚Í‚Ÿ`

(*PƒP*) =‚R ‚Í‚Ÿ`

(–PƒP–) =‚R ‚Í‚Ÿ`
(PƒP* ‚Í‚Ÿ`
(PƒP– ‚Í‚Ÿ`

(PƒP*) ‚Í‚Ÿ`

(PƒP–) ‚Í‚Ÿ`

ε= (PƒP* ‚Í‚Ÿ`

ε= (PƒP– ‚Í‚Ÿ`

ε= (PƒP*) ‚Í‚Ÿ`

ε= (PƒP–) ‚Í‚Ÿ`

C= (PƒP* ‚Í‚Ÿ`

C= (PƒP– ‚Í‚Ÿ`

C= (PƒP*) ‚Í‚Ÿ`

C= (PƒP–) ‚Í‚Ÿ`
*PƒP) ‚Í‚Ÿ`
–PƒP) ‚Í‚Ÿ`

(*PƒP) ‚Í‚Ÿ`

(–PƒP) ‚Í‚Ÿ`

*PƒP) =3 ‚Í‚Ÿ`
–PƒP) =3 ‚Í‚Ÿ`
(*PƒP) =3 ‚Í‚Ÿ`
(–PƒP) =3 ‚Í‚Ÿ`

*PƒP) =‚R ‚Í‚Ÿ`

–PƒP) =‚R ‚Í‚Ÿ`

(*PƒP) =‚R ‚Í‚Ÿ`

(–PƒP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VPƒPV)

(VPƒPV) ‚Í‚Ÿ`

ε= (VPƒPV) ‚Í‚Ÿ`

C= (VPƒPV) ‚Í‚Ÿ`

(VPƒPV) =3 ‚Í‚Ÿ`

(VPƒPV) =‚R ‚Í‚Ÿ`
(PƒPV ‚Í‚Ÿ`

(PƒPV) ‚Í‚Ÿ`

ε= (PƒPV ‚Í‚Ÿ`

ε= (PƒPV) ‚Í‚Ÿ`

C= (PƒPV ‚Í‚Ÿ`

C= (PƒPV) ‚Í‚Ÿ`
VPƒP) ‚Í‚Ÿ`

(VPƒP) ‚Í‚Ÿ`

VPƒP) =3 ‚Í‚Ÿ`
(VPƒP) =3 ‚Í‚Ÿ`

VPƒP) =‚R ‚Í‚Ÿ`

(VPƒP) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (PŒûP)

(PŒûP) ‚Í‚Ÿ`

ε= (PŒûP) ‚Í‚Ÿ`

C= (PŒûP) ‚Í‚Ÿ`

(PŒûP) =3 ‚Í‚Ÿ`

(PŒûP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( PŒûP )

( PŒûP ) ‚Í‚Ÿ`

ε= ( PŒûP ) ‚Í‚Ÿ`

C= ( PŒûP ) ‚Í‚Ÿ`

( PŒûP ) =3 ‚Í‚Ÿ`

( PŒûP ) =‚R ‚Í‚Ÿ`
(PŒûP ‚Í‚Ÿ`

(PŒûP ) ‚Í‚Ÿ`

(PŒûP@) ‚Í‚Ÿ`

ε= (PŒûP ‚Í‚Ÿ`

ε= (PŒûP ) ‚Í‚Ÿ`

ε= (PŒûP@) ‚Í‚Ÿ`

C= (PŒûP ‚Í‚Ÿ`

C= (PŒûP ) ‚Í‚Ÿ`

C= (PŒûP@) ‚Í‚Ÿ`
PŒûP) ‚Í‚Ÿ`

( PŒûP) ‚Í‚Ÿ`

(@PŒûP) ‚Í‚Ÿ`

PŒûP) =3 ‚Í‚Ÿ`
( PŒûP) =3 ‚Í‚Ÿ`
(@PŒûP) =3 ‚Í‚Ÿ`

PŒûP) =‚R ‚Í‚Ÿ`

( PŒûP) =‚R ‚Í‚Ÿ`

(@PŒûP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;PŒûP;)
‚Í‚Ÿ` (GPŒûPG)

(;PŒûP;) ‚Í‚Ÿ`

(GPŒûPG) ‚Í‚Ÿ`

ε= (;PŒûP;) ‚Í‚Ÿ`
ε= (GPŒûPG) ‚Í‚Ÿ`

C= (;PŒûP;) ‚Í‚Ÿ`

C= (GPŒûPG) ‚Í‚Ÿ`

(;PŒûP;) =3 ‚Í‚Ÿ`

(GPŒûPG) =3 ‚Í‚Ÿ`

(;PŒûP;) =‚R ‚Í‚Ÿ`

(GPŒûPG) =‚R ‚Í‚Ÿ`
(PŒûP; ‚Í‚Ÿ`
(PŒûPG ‚Í‚Ÿ`

(PŒûP;) ‚Í‚Ÿ`

(PŒûP; ) ‚Í‚Ÿ`

(PŒûPG) ‚Í‚Ÿ`

ε= (PŒûP; ‚Í‚Ÿ`

ε= (PŒûPG ‚Í‚Ÿ`

ε= (PŒûP;) ‚Í‚Ÿ`

ε= (PŒûP; ) ‚Í‚Ÿ`

ε= (PŒûPG) ‚Í‚Ÿ`

C= (PŒûP; ‚Í‚Ÿ`

C= (PŒûPG ‚Í‚Ÿ`

C= (PŒûP;) ‚Í‚Ÿ`

C= (PŒûP; ) ‚Í‚Ÿ`

C= (PŒûPG) ‚Í‚Ÿ`
;PŒûP) ‚Í‚Ÿ`
GPŒûP) ‚Í‚Ÿ`

(;PŒûP) ‚Í‚Ÿ`

( ;PŒûP) ‚Í‚Ÿ`

(GPŒûP) ‚Í‚Ÿ`

;PŒûP) =3 ‚Í‚Ÿ`

GPŒûP) =3 ‚Í‚Ÿ`
(;PŒûP) =3 ‚Í‚Ÿ`
( ;PŒûP) =3 ‚Í‚Ÿ`
(GPŒûP) =3 ‚Í‚Ÿ`

;PŒûP) =‚R ‚Í‚Ÿ`

GPŒûP) =‚R ‚Í‚Ÿ`

(;PŒûP) =‚R ‚Í‚Ÿ`

( ;PŒûP) =‚R ‚Í‚Ÿ`

(GPŒûP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*PŒûP*)
‚Í‚Ÿ` (–PŒûP–)

(*PŒûP*) ‚Í‚Ÿ`

(–PŒûP–) ‚Í‚Ÿ`

ε= (*PŒûP*) ‚Í‚Ÿ`
ε= (–PŒûP–) ‚Í‚Ÿ`

C= (*PŒûP*) ‚Í‚Ÿ`

C= (–PŒûP–) ‚Í‚Ÿ`

(*PŒûP*) =3 ‚Í‚Ÿ`

(–PŒûP–) =3 ‚Í‚Ÿ`

(*PŒûP*) =‚R ‚Í‚Ÿ`

(–PŒûP–) =‚R ‚Í‚Ÿ`
(PŒûP* ‚Í‚Ÿ`
(PŒûP– ‚Í‚Ÿ`

(PŒûP*) ‚Í‚Ÿ`

(PŒûP–) ‚Í‚Ÿ`

ε= (PŒûP* ‚Í‚Ÿ`

ε= (PŒûP– ‚Í‚Ÿ`

ε= (PŒûP*) ‚Í‚Ÿ`

ε= (PŒûP–) ‚Í‚Ÿ`

C= (PŒûP* ‚Í‚Ÿ`

C= (PŒûP– ‚Í‚Ÿ`

C= (PŒûP*) ‚Í‚Ÿ`

C= (PŒûP–) ‚Í‚Ÿ`
*PŒûP) ‚Í‚Ÿ`
–PŒûP) ‚Í‚Ÿ`

(*PŒûP) ‚Í‚Ÿ`

(–PŒûP) ‚Í‚Ÿ`

*PŒûP) =3 ‚Í‚Ÿ`
–PŒûP) =3 ‚Í‚Ÿ`
(*PŒûP) =3 ‚Í‚Ÿ`
(–PŒûP) =3 ‚Í‚Ÿ`

*PŒûP) =‚R ‚Í‚Ÿ`

–PŒûP) =‚R ‚Í‚Ÿ`

(*PŒûP) =‚R ‚Í‚Ÿ`

(–PŒûP) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VPŒûPV)

(VPŒûPV) ‚Í‚Ÿ`

ε= (VPŒûPV) ‚Í‚Ÿ`

C= (VPŒûPV) ‚Í‚Ÿ`

(VPŒûPV) =3 ‚Í‚Ÿ`

(VPŒûPV) =‚R ‚Í‚Ÿ`
(PŒûPV ‚Í‚Ÿ`

(PŒûPV) ‚Í‚Ÿ`

ε= (PŒûPV ‚Í‚Ÿ`

ε= (PŒûPV) ‚Í‚Ÿ`

C= (PŒûPV ‚Í‚Ÿ`

C= (PŒûPV) ‚Í‚Ÿ`
VPŒûP) ‚Í‚Ÿ`

(VPŒûP) ‚Í‚Ÿ`

VPŒûP) =3 ‚Í‚Ÿ`
(VPŒûP) =3 ‚Í‚Ÿ`

VPŒûP) =‚R ‚Í‚Ÿ`

(VPŒûP) =‚R ‚Í‚Ÿ`
 
 
‚Í‚Ÿ` (P¢P)

(P¢P) ‚Í‚Ÿ`

ε= (P¢P) ‚Í‚Ÿ`

C= (P¢P) ‚Í‚Ÿ`

(P¢P) =3 ‚Í‚Ÿ`

(P¢P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` ( P¢P )

( P¢P ) ‚Í‚Ÿ`

ε= ( P¢P ) ‚Í‚Ÿ`

C= ( P¢P ) ‚Í‚Ÿ`

( P¢P ) =3 ‚Í‚Ÿ`

( P¢P ) =‚R ‚Í‚Ÿ`
(P¢P ‚Í‚Ÿ`

(P¢P ) ‚Í‚Ÿ`

(P¢P@) ‚Í‚Ÿ`

ε= (P¢P ‚Í‚Ÿ`

ε= (P¢P ) ‚Í‚Ÿ`

ε= (P¢P@) ‚Í‚Ÿ`

C= (P¢P ‚Í‚Ÿ`

C= (P¢P ) ‚Í‚Ÿ`

C= (P¢P@) ‚Í‚Ÿ`
P¢P) ‚Í‚Ÿ`

( P¢P) ‚Í‚Ÿ`

(@P¢P) ‚Í‚Ÿ`

P¢P) =3 ‚Í‚Ÿ`
( P¢P) =3 ‚Í‚Ÿ`
(@P¢P) =3 ‚Í‚Ÿ`

P¢P) =‚R ‚Í‚Ÿ`

( P¢P) =‚R ‚Í‚Ÿ`

(@P¢P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (;P¢P;)
‚Í‚Ÿ` (GP¢PG)

(;P¢P;) ‚Í‚Ÿ`

(GP¢PG) ‚Í‚Ÿ`

ε= (;P¢P;) ‚Í‚Ÿ`
ε= (GP¢PG) ‚Í‚Ÿ`

C= (;P¢P;) ‚Í‚Ÿ`

C= (GP¢PG) ‚Í‚Ÿ`

(;P¢P;) =3 ‚Í‚Ÿ`

(GP¢PG) =3 ‚Í‚Ÿ`

(;P¢P;) =‚R ‚Í‚Ÿ`

(GP¢PG) =‚R ‚Í‚Ÿ`
(P¢P; ‚Í‚Ÿ`
(P¢PG ‚Í‚Ÿ`

(P¢P;) ‚Í‚Ÿ`

(P¢P; ) ‚Í‚Ÿ`

(P¢PG) ‚Í‚Ÿ`

ε= (P¢P; ‚Í‚Ÿ`

ε= (P¢PG ‚Í‚Ÿ`

ε= (P¢P;) ‚Í‚Ÿ`

ε= (P¢P; ) ‚Í‚Ÿ`

ε= (P¢PG) ‚Í‚Ÿ`

C= (P¢P; ‚Í‚Ÿ`

C= (P¢PG ‚Í‚Ÿ`

C= (P¢P;) ‚Í‚Ÿ`

C= (P¢P; ) ‚Í‚Ÿ`

C= (P¢PG) ‚Í‚Ÿ`
;P¢P) ‚Í‚Ÿ`
GP¢P) ‚Í‚Ÿ`

(;P¢P) ‚Í‚Ÿ`

( ;P¢P) ‚Í‚Ÿ`

(GP¢P) ‚Í‚Ÿ`

;P¢P) =3 ‚Í‚Ÿ`

GP¢P) =3 ‚Í‚Ÿ`
(;P¢P) =3 ‚Í‚Ÿ`
( ;P¢P) =3 ‚Í‚Ÿ`
(GP¢P) =3 ‚Í‚Ÿ`

;P¢P) =‚R ‚Í‚Ÿ`

GP¢P) =‚R ‚Í‚Ÿ`

(;P¢P) =‚R ‚Í‚Ÿ`

( ;P¢P) =‚R ‚Í‚Ÿ`

(GP¢P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (*P¢P*)
‚Í‚Ÿ` (–P¢P–)

(*P¢P*) ‚Í‚Ÿ`

(–P¢P–) ‚Í‚Ÿ`

ε= (*P¢P*) ‚Í‚Ÿ`
ε= (–P¢P–) ‚Í‚Ÿ`

C= (*P¢P*) ‚Í‚Ÿ`

C= (–P¢P–) ‚Í‚Ÿ`

(*P¢P*) =3 ‚Í‚Ÿ`

(–P¢P–) =3 ‚Í‚Ÿ`

(*P¢P*) =‚R ‚Í‚Ÿ`

(–P¢P–) =‚R ‚Í‚Ÿ`
(P¢P* ‚Í‚Ÿ`
(P¢P– ‚Í‚Ÿ`

(P¢P*) ‚Í‚Ÿ`

(P¢P–) ‚Í‚Ÿ`

ε= (P¢P* ‚Í‚Ÿ`

ε= (P¢P– ‚Í‚Ÿ`

ε= (P¢P*) ‚Í‚Ÿ`

ε= (P¢P–) ‚Í‚Ÿ`

C= (P¢P* ‚Í‚Ÿ`

C= (P¢P– ‚Í‚Ÿ`

C= (P¢P*) ‚Í‚Ÿ`

C= (P¢P–) ‚Í‚Ÿ`
*P¢P) ‚Í‚Ÿ`
–P¢P) ‚Í‚Ÿ`

(*P¢P) ‚Í‚Ÿ`

(–P¢P) ‚Í‚Ÿ`

*P¢P) =3 ‚Í‚Ÿ`
–P¢P) =3 ‚Í‚Ÿ`
(*P¢P) =3 ‚Í‚Ÿ`
(–P¢P) =3 ‚Í‚Ÿ`

*P¢P) =‚R ‚Í‚Ÿ`

–P¢P) =‚R ‚Í‚Ÿ`

(*P¢P) =‚R ‚Í‚Ÿ`

(–P¢P) =‚R ‚Í‚Ÿ`
‚Í‚Ÿ` (VP¢PV)

(VP¢PV) ‚Í‚Ÿ`

ε= (VP¢PV) ‚Í‚Ÿ`

C= (VP¢PV) ‚Í‚Ÿ`

(VP¢PV) =3 ‚Í‚Ÿ`

(VP¢PV) =‚R ‚Í‚Ÿ`
(P¢PV ‚Í‚Ÿ`

(P¢PV) ‚Í‚Ÿ`

ε= (P¢PV ‚Í‚Ÿ`

ε= (P¢PV) ‚Í‚Ÿ`

C= (P¢PV ‚Í‚Ÿ`

C= (P¢PV) ‚Í‚Ÿ`
VP¢P) ‚Í‚Ÿ`

(VP¢P) ‚Í‚Ÿ`

VP¢P) =3 ‚Í‚Ÿ`
(VP¢P) =3 ‚Í‚Ÿ`

VP¢P) =‚R ‚Í‚Ÿ`

(VP¢P) =‚R ‚Í‚Ÿ`
–ß‚éƒ{ƒ^ƒ“